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ABSTRACT
A fundamental challenge in multi-robot systems is spatial coordi-

nation (avoiding collisions) between robots, each under its own

control. Swarm methods, where by robots coordinate ad-hoc and
locally, offer a promising approach. However, while empirically

demonstrated to be viable in practice, no guarantees of perfor-

mance are known. This paper formalizes a class of multi-robot

cooperative tasks as differential extensive-form games. We show

that the system coordination overhead is a differential function,

forming a connection between the theoretical maximum-payoff

equilibrium of the system, and the rational self-interested choices

of individual robots during task execution: robot swarms can be
rational in theory. We then show how to approximate the rational

decision-making in practice using reinforcement learning, using

internal measures for rewards. We empirically show this leads to

consistent optimal performance in with physical and simulated

robots.
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1 INTRODUCTION
Distributed multi-robot systems are comprised of multiple robots,

each under its own control. Typically, the robots carry out a tasks

towards a global goal. Examples include coverage [1, 6, 14, 22, 35],
patrolling [2, 12, 25, 34], foraging [4, 11, 16, 18, 23, 24], order pick-
ing [17, 32] (made famous by Kiva Systems/Amazon Robotics), and

more.

A fundamental challenge here is spatial coordination, i.e., avoid-
ing and resolving collisions with others. Such coordination neces-

sarily introduces overhead, and therefore both supports and com-

petes with achievement of the goals of the robots. Centralized

solutions to managing spatial coordination are computationally

intractable [36], and are often not tolerant to mechanical and en-

vironment unpredictability (e.g., humans in the work area) [32].

Distributed approaches which rely on joint decision-making by

the robots (e.g., [19, 33] require high communication availability
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and the capability of robots to assess not just their own state, but

those of others. Thus a promising line of research explores swarm

methods, where by robots coordinate ad-hoc and locally, with little

or no communications [4, 18, 23, 24]. However, while empirically

demonstrated to be a viable solution in practice, no theoretical

guarantees of performance are known, nor a formalization of the

task in a way that admits analysis.

This paper formalizes a class of multi-robot cooperative tasks as

differential extensive-form games. The game itself requires knowl-

edge (e.g., of the payoffs of others) that individual swarm robots

do not have access to. However, we show that the system coordi-

nation overhead is a differential function for the game, forming a

connection between the theoretical maximum-payoff equilibrium

of the system, and the rational choices of individual robots during

task execution. In other words, individual robots can make rational
coordination decisions resulting in globally optimal equilibrium.

A swarm acting as prescribed is rational in theory. We show how

to closely approximate the optimal decision-making in practice, re-

lying on reinforcement learning to improve decision-making, while

operating strictly within the limited capabilities of simple swarm

robots, in both perception and computation. These approximations

generalize and improve on earlier work, which emerges as a spe-

cial case. We empirically evaluate the efficacy of these methods in

two multi-robot domains: physical robots carrying out a variant

foraging task, and simulated robots carrying out order-picking.

2 MOTIVATION AND BACKGROUND
To position our work in context, Figure 1 shows a perspective

(previously described in [18]) on the structure of task execution in

time, for an individual robot. The robot begins by executing its task,

stopping when a spatial conflict occurs (e.g., a collision is imminent).

It then selects a collision-handling method, which executes for a

time. When the collision is averted, the robot can switch back

to carrying out its task until another collision is imminent. This

continues up until task execution has ended. The time interval

between collisions is split into two [18], termed the active time
(spent by the robot actively coordinating—shown in grey), and the

passive time (no need to coordinate; the robot focuses on its task).

This view of the robot’s timeline allows us to position our work

with respect to others. First, we note that collisions involve more

than one robot. If all the robots are involved in each others’ task

execution and decision-making, the single-robot timeline above

is also the multi-robot system timeline. Theoretically, multi-robot

path planning reduces or eliminates the number of collisions, and

explicit joint decision making can reduce their collective duration.

However, the computational, communications, and actual cost of

these methods can often be too high in practice, and thus reactive

approaches are often employed. These follow two general directions:
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Figure 1: A Single Robot’s timeline.

specific collision-handling algorithms which reduce the active time

duration, and algorithm-selection methods which allow the robot

to tailor its selection of collision-handling algorithm to the specific

collision settings.

Collision Handling Algorithms. Purely reactive coordination algo-
rithms aremyopic. They respond to a collisionwith no consideration
of future collisions. They are extremely simple to implement and use

(both in practice and theory), and are generally task-independent

(because they do not use information about the goals of the task).

We use several such reactive algorithms in our work.

Some algorithms resolve collisions by moving backwards from

the collision position for a fixed time or distance [23], potentially

adding noise to movement [5]. Others try to keep one robot moving

forward: the aggression family of algorithms allows the robot with

the highest aggression factor gets the right of way [28].

Others carry out limited planning. We use a variant of dynamic
window [13] in the experiments, as it makes assumptions that are

met in practice. Other potential choices include Reciprocal Velocity

Obstacles methods such as ORCA [27], or safe-navigation methods

(e.g., [7]). However, they prove too complex for our simple robots.

Algorithm Selection. It is now understood that while eachmethod

is effective in some settings, no method is always effective [23, 24]:

their performance changes with density and other factors. Thus

a promising approach is to have the robots dynamically select

between collision-handling algorithms.

Wolpert and Tumer [30] described the COIN framework, which

models multi-agent systems where agents work to maximize global

utility, but with little or no communications between them. They

show that if agents can estimate the wonderful life utility—how the

agent’s actions (or lack thereof) impact global utility—then it is

possible to use reinforcement learning to improve global utility in a

guaranteed manner, in various domains including robotics [26, 29].

However, this relies on knowing the global utility, and/or the value

(payoff) of others’ actions. In practice, this is often not possible. We

build on their work by showing how to approximate the wonderful

life utility in practice in multi-robot settings

Erusalimchik et al. [18] propose a reward function (the coordina-

tion overhead of an interval—the ratio of the individual active time

to the total interval duration), as the basis for preferring algorithms,

using a stateless Q-learning variant [10]. We show later that theirs

is a special case emerging from our work.

ALAN [15] is a method using reinforcement learning techniques

with ORCA to improve global measures. It improves on either

using only ORCA or only reinforcement learning. However, ALAN

can only choose between alternatives within ORCA, and does not

provide guarantees on performance, as we do here.

3 SWARMS AND GAME THEORY
We begin in Section 3.1 by introducing an abstract game-theoretic

model of multi-robot tasks carried out by a swarm of robots. We

then make incremental modifications to this abstract model, to

bring it closer to the reality of physical interacting robots, when the

robots cannot communicate (Sections 3.2–3.3). Finally, in section 3.4,

we address the challenge of learning optimal actions according to

the game-theoretic model we introduced.

3.1 Swarm tasks as extensive-form games
When considering the task multiple robots (each engaging in its

own coordination method arbitration), we follow Erusalimchik et

al. [18] in representing the task as an extensive form game between

n robots. The extensive form game represents every possible out-

come as a function of the sequence of parallel coordination actions

taken by all robots in every collision during the run. In this context,

the outcome is the utility of each of the robots in the alloted time.

The root node of the game tree represents the first collision.

Given that there are n robots, the first n layers of the game tree will

each represent a robot and its possible actions in the first collision.

This is because we focus on non-communicating coordination meth-

ods, and thus we will treat each collision as having no information

on the actions and utilities selected and gained by other robots.

The actions independently taken by players are coordination

methods: The gains (payoffs) from taking them and the costs which

they entail differ between robots and between collisions, but are

theoretically accounted for. Each action takes time.

The next n layers will represent the second collision in the same

manner. This sequence continues until a terminal node is reached—

when the time for the task is done: A terminal node represents

the end of the game (task) and holds the utility of each player.

Since different actions can yield different time intervals between

collisions, terminal nodes can each be of different depth depending

on the sequence of collisions (and associated joint actions chosen)

during the game. Each such sequence is represented as a path in

the game tree. Each terminal node will hold a vector of numerical

values representing the utilities of each robot in the system.

3.2 Folding the game into normal-form
The extensive form model of a task run represents every possible

outcome of the task run. This is only of theoretical value, as no

robot—nor their designers—can predict the outcome of future colli-

sions, nor their timing, nor their impact on global payoffs. In reality,

robots only know their history of previous collisions, and the imme-

diately imminent collision. Indeed, in swarm settings robots cannot

know of the other robots’ choices (which theoretically affects their

own) and thus even this information is hidden from them.

In order for robots to make decisions based only the history and

current collision, we must draw a connection between the global

final utility (payoff) theoretically reached using the extensive-form

game, and the sequence of collisions in which the robots make

collision-resolution choices. Robots may then rely on signals that

are obtained during a joint collision.
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To do this, we take an intermediate step and show how the

extensive form game can be expressed as a sequence of normal

form games, each representing a single joint collision. We define

the following:

• s
j
i : robot i’s action at the j’th collision. s j : joint action at

collision j.

• h
j
i = (s1i , s

2

i , ..., s
j
i ): Robot i’s history of actions until the

j’th collision inclusive. History of all robots’ actions until j
inclusive: hj .
• The cost of robot i at the j’th collision will be denoted as c

j
i .

• The gain of robot i at the j’th collision will be denoted as д
j
i .

• u
j
i = д

j
i − c

j
i : The utility of robot i at the j’th collision.

• U : The global utility of all the robots during the whole run.

We start with the most general case where outcomes of a robot

at the j’th collision may depend on the entire history of play of all

the robots up until collision j inclusive. This means that u
j
i ,д

j
i , c

j
i

are all functions of hj .U will now depend on the entire history of

play. Given that the number of collisions for the whole task run is c ,
U will be a function of hc and will be defined as the sum of utilities

of every robot and every collision during the task run (Eq. 1).

U (hc ) =
∑
i ∈N

c∑
j=1

ui (h
j ) =

∑
i ∈N

c∑
j=1

(дi (h
j ) − ci (h

j )) (1)

We can look at each joint collision as a normal-form (matrix)

game representing the outcomes of this collision only, rather than

the whole task run. For the j’th collision, the player set of this

matrix is the set of robots and the action set of each robot is its set

of coordination methods. Given the history of joint actions played

up until collision j (inclusive), hj , the payoffs of this matrix will

be the sum of the utilities of the robots obtained only for the j’th
collision

∑
i ∈N ui (h

j ) as a function of the history of play. We call

this matrix the Folded Game Matrix.

3.3 Global utility and folded matrices
Robots in a system have limited sensing and communication ca-

pabilities. They are unable to know the utilities of other robots,

even in the same joint action. Indeed, each robot does not even

know how its own action affects its own immediate utility. The

only information available to it is data from its own sensors and

internal state information. We formally tie the active and passive

times of the collision to the utility of the robot resulting from the

collision. To do this we assume that individual gains in active time

are zero (since a robot in active time is handling a collision), and

therefore gains occur only in passive time: дi (h
j ) = дi (Pi (h

j )). We

will further assume that the gains are proportional to the passive

time given history of play hj : дi (h
j ) = αPi (h

j ), α = const . We also

assume that costs are constant, ci (h
j ) = β (Ai (h

j ) + Pi (h
j )) where

β = const .

3.3.1 Global Utility and Coordination Overhead.

Definition 3.1. The Coordination Overhead (CO) is the total

amount of time the system was in active time divided by the total

time invested in the task run: CO (hc ) = 1

T
∑
i ∈N
∑c
j=1Ai (h

j ).

SinceT is the sum of all cycle length of any of the robots’ task run,

we can write T =
∑c
j=1 (Ai (h

j ) + Pi (h
j )) for any robot i . Therefore,

CO can also be written as CO (hc ) =
∑
i ∈N

∑
j=1 Ai (h j )∑c

j=1 (Ai (h j )+Pi (h j ))
. We

will now show, given the above assumptions, that U is a linear

decreasing function of CO , i.e., minimizing CO is maximizing U .

Theorem 3.2. Given the assumptions on the cost and gain, U is a
linear decreasing function of CO .

Proof. U =
∑
i ∈N
∑c
j=1[ui (h

j )] =
∑
i ∈N
∑c
j=1[дi (h

j ) −

ci (h
j )] =

∑
i ∈N
∑c
j=1[αPi (h

j ) − β (Ai (h
j ) + Pi (h

j ))]

=
∑
i ∈N
∑c
j=1 (αPi (h

j )) −
∑
i ∈N
∑c
j=1 β (Ai (h

j ) + Pi (h
j ))

= T
α
∑
i∈N
∑c
j=1 Pi (h

j )

T − nTβ = Tα (1 − CO (hc )) − nTβ =

−Tα ·CO (hc ) +T (α − nβ ) □

3.3.2 Coordination Overhead and the Folded Matrices. We fur-

ther assume that for every collision, the outcomes of the robots’

method selection depend only on the current joint action performed

and not on the history of all joint actions performed. This alsomeans

that no matter what the collision index is, as long as the joint ac-

tion stays the same, the outcomes of this collision stay the same.

Therefore, variables that depend on the history of joint actions

played until collision j, hj ∈ S j , depend only on the joint action

that was played in time j, s j ∈ S . We can now denote the active

time as Ai (s
j ) and since it does not vary in time, we can denote it

as Ai (s ). The same applies for Pi ,дi , ci ,ui andU . One consequence

of this assumption is that instead of the task run being a sequence

of different folded game martices depending on the history of play,

it is now a single folded game matrix which is the same for every

collision in the task run.

Given a joint action s and a robot i , we will define EItot (s ) to
be the sum of the effectiveness indices of all robots: EItot (s ) =∑
i ∈N EIi (s ) =

∑
i ∈N

Ai (s )
Ai (s )+Pi (s )

. Let s∗ be the joint action that

minimizes EItot : s
∗ = arдmins (EItot (s )). If the system always plays

joint action s∗ its CO will be: CO (h∗) =
∑
i ∈N

c ·Ai (s∗ )
c ·[Ai (s∗ )+Pi (s∗ )]

=∑
i ∈N

Ai (s∗ )
Ai (s∗ )+Pi (s∗ )

= EItot (s
∗) where h∗ = (s∗, s∗, ..., s∗). We will

now show that for every sequence of joint actionsCO will be greater

or equal to EItot (s
∗). This means that in order to minimize CO the

system always needs to select s∗ as the joint action.

Theorem 3.3. for any number of collisions c and histories of play
hc , CO (hc ) ≥ EItot (s

∗).

Proof.

CO (hc ) =
∑
i ∈N

∑c
j=1Ai (s

j )∑c
j=1 (Ai (s

j ) + Pi (s j ))
=
∑
i ∈N

∑c
j=1Ai (s

j )

T

=
1

T

∑
i ∈N

c∑
j=1

Ai (s
j ) =

1

T

c∑
j=1

∑
i ∈N

Ai (s
j )

=
1

T

c∑
j=1

l (s j )
∑
i ∈N

Ai (s
j )

l (s j )
=

1

T

c∑
j=1

l (s j )EItot (s
j )

≥
1

T

c∑
j=1

l (s j )EItot (s
∗) = EItot (s

∗)
1

T

c∑
j=1

l (s j )

= EItot (s
∗)

1

T
T = EItot (s

∗)

□
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However, robots only know internal properties; they cannot

know s∗, which requires knowledge of the actions of other robots.

We need to find a way to make the robots converge to s∗ by using

internal measurements only.

3.4 Learning Optimal Actions
3.4.1 Potential games. We show that the use of Potential

Games [21] can address this challenge, A potential game is a normal

form game where for every player i , the difference in the payoff

of every unilateral deviation of player i’s action si is related to the

difference of a single potential function ψ (s ) mapping each joint

action to a scalar.ψ (s ) can be seen as a global signal (not necessarily
visible to the players) which depends on the joint action.

Potential games hold several important characteristics: First,

they always have at least one pure-strategy Nash equilibrium. Also,

when players use pure strategies, a change in one player’s individual

payoff due to changing its individual action will be aligned with

the potential function. This means that in any potential game if one

player chooses to change its action to an action with better payoff,

the potential function will always benefit, and vice versa. Therefore,

if players choose to maximize their individual payoffs, the system

will converge to a pure-strategy Nash equilibrium, which would be

at least a local optimum of the potential function.

In our case, we need to find a payoff function for each robot,

such that the robots play a potential game with potential function

EItot . Doing so will make the robots converge to an optimal joint

action in terms of EItot .

3.4.2 Total EI as a Potential Function. In Section 3.3 we’ve seen

that the problem of optimizing the global utility narrows down to

minimizing EItot by converging to a single joint action s∗ while
still using only internal measurements.

In order to do so we use theWonderful Life Utility (WLU) [31].
Given a global utility U , the WLU for robot i is a measurement of

the difference between the resulting U and the global utility when

robot i is absent. In terms of game theory, the absence of robot i is
equivalent to the robot choosing a null action denoted by ϕi .

Definition 3.4. Wonderful Life Utility. Given a global utility U
and a joint action s = (si , s−i ), the wonderful life utility of robot i
is:

WLUU
i (si , s−i ) = U (si , s−i ) −U (ϕi , s−i )

The WLU is, in fact, a measurement of robot i’s marginal con-

tribution to U . It is known that agents that learn with WLU as a

utility function play a potential game with the global utility as the

potential function [3, 20].

Since our goal is to optimize EItot , we can now make the robots

choose actions according the WLU of EItot . If robots do so, not

only they will converge to a joint action, the potential function will

be ψ = EItot . Therefore, this joint action will at least be a local

minimum of EItot due to the properties of potential games. We will

now show a closed expression ofWLU EItot
i .

Theorem 3.5. let li (s ) be the cycle length of robot i given a joint
action s : li (s ) = Ai (s ) +Pi (s ). TheWLU of EItot for robot i takes the

form
Ai (s )+A

ϕ
i (s )

Ai (s )+Pi (s )
−
Ai (ϕi ,s−i )
li (ϕi ,s−i )

whereAϕi (s ) =
∑
j ∈N \{i } (Aj (s )

li (s )
lj (s )
−

Aj (ϕi , s−i )
li (s )

lj (ϕi ,s−i )
).

Proof (sketch).

WLU EItot
i (s ) = EItot (s ) − EItot (ϕi , s−i )

=
Ai (s ) +A

ϕ
i (s )

Ai (s ) + Pi (s )
−
Ai (ϕi , s−i )

li (ϕi , s−i )

□

This is the most general form of theWLU of EItot . Different
assumptions result in special cases that can be useful.

First, when a robot is absent from the system it cannot contribute

to the system and its costs are zero. The expression
Ai (ϕi ,s−i )
li (ϕi ,s−i )

is the effectiveness index of robot i when it is absent. Since we

assumed that gains in active time are zero we can express the

absence of the robot i as if it was always in active time during

the cycle length li (ϕi , s−i ). This assumption can be expressed as

Ai (ϕi , s−i ) = li (ϕi , s−i ). Therefore we can see that
Ai (ϕi ,s−i )
li (ϕi ,s−i )

= 1.

TheWLU will now take the formWLU EItot
i (s ) =

Ai (s )+A
ϕ
i (s )

Ai (s )+Pi (s )
− 1.

Also, collisions are synchronous in our model. This means that

cycle length depends only on the joint action selected and not on

the robot. For all pairs of robots i, j ∈ N and all joint actions s:
li (s ) = lj (s ). Therefore, we can remove the subscript and write l (s ).

The effect of this assumption is that now A
ϕ
i (s ) takes a simpler

form: A
ϕ
i (s ) =

∑
j ∈N \{i } (Aj (s ) −Aj (ϕi , s−i )

l (s )
l (ϕi ,s−i )

)

Finally, the absence of robot i does not affect cycle length: l (s ) =

l (ϕi , s−i ).A
ϕ
i (s ) can now be expressed asA

ϕ
i (s ) =

∑
j ∈N \{i } (Aj (s )−

Aj (ϕi , s−i )). Now A
ϕ
i has a meaning - it is the change in the total

active time of the system due to the absence of robot i .
ThusWLU takes the form

WLU EItot
i (s ) =

Ai (s ) +
∑
j ∈N \{i } (Aj (s ) −Aj (ϕi , s−i ))

Ai (s ) + Pi (s )
− 1

which can be written as

WLU EItot
i (s ) =

Ai (s ) +A
ϕ
i (s )

Ai (s ) + Pi (s )
− 1

Omitting the −1 element will not change the optimization problem.

From the above formula ofWLU we can see that either minimizing

Ai (s ) or A
ϕ
i (s ) minimizesWLU . ComparingWLU to EI we can see

that EI [18] a special case ofWLU but with A
ϕ
i = 0 (Henceforth,

unless stated otherwise, we denoteWLU of EItot asWLUi (s ).
The WLU may now be used by robots as a reward function in a

reinforcement learning algorithm. In practice, they will use WLU

approximation EWLU (see Section 4). To do this, they keep track of

A and P of intervals between collisions.

3.5 Summary of Assumptions
We summarize the assumptions made in the development of the

model in Table 1.
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Assumption Motivation

Gains in active time are zero

Robots cannot directly con-

tribute to the task when they

focus on conflict resolution

and avoid collisions.

Gains are proportional to pas-

sive time

The more a robot works unin-

terrupted, the higher its gains

will be. Assumption for theo-

retical derivation.

Costs are proportional to time

Robots spend resources (e.g.,

power) when operating.

Longer operations leads to

more spending. Assumption

for theoretical derivation.

Outcomes of robots’ actions

do not depend on history of

method choices

Without learning, the success

of collision avoidance in past

collisions does not impact its

success in the current collision.

For theoretical derivation.

When a robot is absent it can-

not contribute to the system:

its gains and costs are zero

By definition.

Cycle length is the same for all

robots for a joint action

The theoretical model is syn-

chronous.

The absence of a robot does

not affect cycle length

The effects of a single robot

in a swarm tend to be negligi-

ble. Assumption for theoreti-

cal derivation.

Table 1: Assumptions made in the development of the theo-
retical model, and the motivation for making them.

4 LEARNING IN PRACTICE
There are gaps between the theory presented and the limitations in

practice: (i) the WLU of EItot for a robot needs knowledge of other
robots’ measurements; (ii) collisions are not mutual—when robots

are about to collide, there is no guarantee that either one of them

will actually recognize a collision and act to avoid it and finally (iii)

active and passive times (A, P ) vary for the same method. These

gaps are addressed below. There is another gap which is explained

but not addressed in this paper (iv) - different clusters of robots can

collide at the same time in different places.

4.1 Approximating WLU of total EI
WLUi is composed of three elements: Ai , Pi and A

ϕ
i . Ai and Pi are

internal to the robot, thus known. However, A
ϕ
i requires the robot

to know the active times of other robots. This is impractical, as

the effects of a robot on other robots often impossible to perceive

accurately by swarm robots.

Thus, robots estimate EWLU i . For lack of space, we report here

only on one such approximation,
GWLUi (s ) =

Ai (s )+na ·A0

Ai (s )+Pi (s )
where na

is the number of robots affected by this robot (i.e., entered collision

avoidance because of the robot), andA0 is an estimate of how much

each robot was affected in terms of active time added to it.

We focus here only on the two most useful approximators out of

several we tested, as evident in the experiments. One is whereA0 =

0, i.e., the active times of other robots is assumed unaffected. This

approximation is the special case EIi [18]. The other approximation

is Minimum over Actions, where the addition in active time to other

robots is by finding the individual action s ′ ∈ Si that has the lowest
average active time, i.e., A0 = mins ′∈Si (

1

|C (s ′) |
∑
j ∈C (s ′) Ai (s

j )).

Here, we define C (s ) ⊆ {1, ..., c} as the subset of collision indices

where joint action s was played. In the same manner we will define

C (si ) as the subset of collision indices where robot i chose individual
action si ∈ Si , regardless of the actions chosen by other robots.

4.2 Dealing with Non-Mutual Collisions
Collisions are asynchronous and often non-mutual. This means

that even if robots collide at the same time, there is no guarantee

that all of them will recognize they collided. This is mainly caused

by limited sensing capabilities. For example, if a robot can only

sense robots that are in front of it, it will not recognize another

robot colliding it from the back.

When a joint collision occurs and a robot cannot recognize it -

there is nothing this robot can do but keep doingwhat he did. On the

other hand, whenever it knows it collided it must do something. If it

collided in passive time, it should coordinate. The main question is

what it should do when it is in active time and it collides once again

with a robot. One option is to keep coordinating as if no collision

occurred. Another option is to preempt the current coordination

method and choose either the same or a new coordination method.

According to our modeling the rightest way to treat collisions

during active time is to preempt the current coordination method

and choose a new coordination method.

4.3 Varying active and passive times
In Section 3 we have assumed that outcomes of a collision rely only

on the joint action selected. In terms of a WLU approximation it

includes all of its elements -Ai , Pi andA
ϕ
i . It can be directly inferred

that the cycle length l = Ai + Pi will stay the same given a joint

collision. However, a robot does not know the joint action played

and from its viewpoint the active and passive times it will obtain

will vary, even if it chooses the same individual action repeatedly

because the active and passive times also depend on other robots.

In addition, in practice the cycle length may vary even for the same

joint action. Therefore, we would like to do some averaging on

Ai , Pi and A
ϕ
i and then calculate aWLU approximation which is

an averaging over the last collisions EWLU = Ai+Ai
ϕ

Ai+Pi
.

This can cause inaccuracies in learningWLU approximations

because the cycle length Ai + Pi is a real-valued signal in continu-

ous time while sampling of Ai , Pi and A
ϕ
i is discrete. Semi Markov

Decision Processes (SMDP) [9] aremodels that represent discrete sam-

pling of a continuous-time reward and also introduce a Q-Learning

variant for SMDPs. We suggest a heuristic based on SMDP which

is a modification of Q-learning that will overcome this inaccuracy

without changing the informational demands of the robots. We

call this the Continuous Time Q-Learning. The formula is similar to

Q-Learning but with some modifications: The learning rate α is set

to be a function of cycle length α ← 1 − e−
∆t
τ ; the bigger the cycle
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Figure 2: Krembot swarm robots.

length the closer it will be to 1, thus giving more weight to collisions

with longer cycle length. Ai , Pi and A
ϕ
i are now also scaled accord-

ing to cycle length: A′i ← (1 − e−
Ai
τ ), P ′i ← e−

Ai
τ (1 − e−

Pi
τ ) · Pi ,

andA
ϕ′
i ← (1− e ( −

Aϕ
′

i
τ )) ·Ao . Finally, we calculate theQ function

q(xi , si ) ← (1 − α )q(xi , si ) + α (−
A′i+A

ϕ′

i
A′i+P

′
i
+ γ ·maxs ′ (Q (x ′i , s

′))).

4.4 Parallel collisions in different clusters
The actions selected by the robots are not the only factor in the

outcome of the system. The model assumes a single synchronous

collision, while in reality, robots are spread all over the work area,

possibly engaged in multiple parallel collisions. We believe this chal-

lenge can be addressed by looking at the density of each collision,

but leave this for future work.

5 EXPERIMENTS
5.1 Experimentation environments
Before describing the experiments we conducted, we will introduce

the environments we conducted experiments on.We initially started

with the Alphabet Soup simulator and then moved to experimenting

with real robots - the Krembot swarm robots.

5.1.1 Krembot swarm robots. After testing reactive arbitration

in the Alphabet Soup simulator we moved to testing the adaptation

in a real world environment. We used Robotican’s Krembot swarm

robots in a domain which is a variant of multi-robot foraging.

Krembot robots are swarm robots with relatively limited sensing

and processing capabilities. They are cylindrical-shaped robots

with a height of 10.5 cm and a diameter of 6.5 cm. Despite their

limited sensing capabilities, those robots can detect collisions and

also distinguish between a robot and a static object (see https:

//www.robotican.net/kremebot).

We tested is a variant of multi-robot foraging. In this domain

there are a few stations fixed in position where robots can acquire

pucks from. Once a robot reaches one of those stations, it takes the

puck and retrieves it to a small area which we call the homebase. It

should be noted that since the Krembot robots have no localization

capabilities they are unable to either remember or plan a path to

one of the stations. Therefore, they do it by randomly searching for

a station.

Experimentation settings. In a similar manner to Alphabet Soup,

the main objective of the robots is to gather as many pucks to

the homebase in a given time. We would like to experiment with

reactive arbitration that will maximize this objective.

We experimented with two Best evade coordination methods,

one with a time parameter of 500ms and the other with a time

parameter of 10000ms. The duration of each run is 1 hour long.

For each hour-long we logged each event such as a collision or a

puck that was retrieved. From this log we extracted statistics on the

number of pucks retrieved and the coordination method choices of

the robots. We extracted statistics based only on the last 15 minutes

of the run since we want the learning to stabilize.

Using the above configuration, we tested the performance of

4 robots and 8 robots for several configurations. We measure the

group performance of each configuration and the time fraction the

robots spent on Best evade 500. This time fraction includes the

active time and the resulting passive time of choosing Best evade

500. Since there are only two methods, it is easy to derive the time

fraction of Best evade 10000.

5.1.2 Alphabet Soup. The Alphabet Soup simulator simulates

the multi-robot task of order picking. Order picking is the task of

collecting items, usually in a structure like a logistic warehouse,

in order to compose orders made by customers. In the Alphabet

Soup simulator the items are portrayed as letters and the orders are

portrayed as words. It is comprised of several word stations where
each word station has a list of words to be composed, buckets which
contain letters, letter stations which are used to re-fill buckets with

letters and the robots which do all the work. The robots have three

main tasks: The first is to take a bucket to a word station in order

to put one letter in this station. The second is to return a bucket

to its original position and the third is to take a bucket to a letter

station.

In this simulator, the task allocation for the robots is centralized

and the collision avoidance mechanism is a reactive heuristic which

is a combination of dynamic window (moving towards most vacant

direction) and waiting in place for a random amount of time. Robots

apply this collision avoidance mechanism when they sense that

they are too close to other robots.

The task allocation mechanism remains unmodified by us. So

is the mechanism which detects and decides when a robot should

coordinate. We only modify the coordination mechanism itself. We

do it by replacing the original collision avoidance mechanism with

a mechanism that arbitrates between reactive coordination meth-

ods. It should be noted that since the original collision avoidance

mechanism can be treated as a reactive method, it can be included

inside the mechanism which arbitrates between reactive methods.

Experimentation settings. Themainmeasurement of performance

for this simulator is the amount of letters placed in word stations in

a given amount of time. Unless stated otherwise, Each simulation

is 10 minutes long with the last 30 seconds used for measuring per-

formance and other statistics. In addition, unless stated otherwise,

measuring na is done by collisions and not by density.
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5.2 WLU-based Learning
We first evaluated the use of the learning procedure in the Kremot-

bots. We tested Best Evade 500 and Best Evade 10000 with EI [18]

using the same Q-Learning parameters for learning and adapta-

tion. Figure 3 indeed shows that not only learning EI with regular

Q-Learning improves performance, but also with more learning

variants: EI andMinimumOver Actions approximations, both using

continuous-time Q-Learning with τ = 10
10

nanoseconds and an

exploration rate of 0.02 both improve performance significantly

over previous work.
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Figure 3: Learning in Krembots for 4 robots (upper chart)
and 8 robots (bottom chart).

Even if the learning procedure is not always the best, it can

improve performance in comparison to other algorithms. We test

two heterogeneous action sets in Alphabet Soup: (i) Repel (700),
Noise(540), Aggression(500), Original, Best evade(600), and (ii) Re-
pel (200), Noise(500), Aggression(2000), Original, Best evade(200).

For each of the action sets we compare the Original coordination

method to random choice and then to the Minimum Over Actions

WLU approximation. For the WLU approximation we used the con-

tinuous time Q-Learning algorithm with τ = 10
10

nanoseconds and

an exploration rate of 0.02. Figure 4 shows that learning using the

WLU approximation significantly improves performance in action

set (i) and performs slightly better in action set (ii).

5.3 Comparison to global utility rewards
Above, we tested rewards that approximateWLU of EItot . We know

that EItot is indirectly connected toU . Despite the fact that EItot
is domain independent andU is domain dependent, we would like

to test whether this indirect connection may impair performance.

Therefore, we compareWLU (EItot ) approximations to rewards

directly based on U .
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Figure 4: Performance of random choice vs. the original co-
ordinationmethod and theMinimumOver ActionsWLU ap-
proximation.

In the COIN framework presented in [30], reward functions are

based onU .We experimentwith those reward functions in Alphabet

Soup. In the context of Alphabet Soup, the performance U is the

total placed letters. Given a time interval ∆t , we denote ∆l as the

amount of letters the system placed in this time. Therefore
∆l
∆t will

simply be the (average) rate of placed letters by the system in ∆t .
In the same manner we define ∆li for the amount of letters placed

by robot i . Each robot learns rewards based on those variables in

the same manner as in reactive arbitration. This implies that ∆t
will represent a robot’s interval between collisions. The reward

functions used in [30] are:

• Team Game (TG) - The rate of placed letters of all the robots

in a given time interval. For robot i , TGi =
∆l
∆t .

• Selfish Utility (SU) - The rate of placed letters of robot i in a

given time interval. SUi =
∆li
∆t .

• Wonderful Life utility (WLU) - The wonderful life utility

of U (not EItot ). We approximate this WLU by the formula

WLUi = SUi −
∑
j∈coli SUj ·Aj

∆t where coli is the set of robots
which collided with robot i in its collision cycle and Aj is

the active time of robot j.
• Aristocrat Utility (AU) - This reward is similar to WLU ofU .

If the main concept of WLU is the difference between the

group performance with the robot and without the robot,

the AU is the difference between the group performance

with the robot performing the current action and the group

performance with the robot performing an "average" action.

The approximation of the AU is AUi = SUi −
∑
s∈S Pi (s )Qi (s )

∆t
where Pi (s ) is the percentage of time robot i chose action s
and Qi (s ) is the Q-value of robot i for action s .

We ran simulations with those approximations for 8 minutes and

measured the rate of placed letters during the whole run. For each

reward function we used Q-Learning with a learning rate of 0.1 and

exploration rate of 0.1. The result for TG was averaged over 103

runs, SU over 106 runs, WLU over 109 runs and AU over 112 runs.

Figure 5 shows that theWLU ofU outperforms all other rewards

based onU . This agrees with the results in [30].

However, given that theWLU of U performs best, we compared

it to different approximations of theWLU of EItot , using different

algorithms:
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• Minimum Over Actions, using continuous time Q-Learning

with τ = 10
10

nanoseconds and exploration rate of 0.02.

• EI, using regular Q-Learning, learning rate 0.05, Exploration

rate 0.02.

• EI, using WoLF-PHC [8], Exploration rate 0.02, α=0.05,
δw=0.0005,δl=0.005.
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Figure 5: Performance of rewards based on U .
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Figure 6: Performance ofWLU (U ) vs. different approxima-
tions ofWLU (EItot ) with different learning algorithms.

Figure 6 shows thatWLU (U ) has the lowest performance in

comparison to allWLU (EItot ) approximations. This shows that

consisting directly on U and its derivatives does not improve per-

formance, even though rewards based on EItot are connected to U
only indirectly.

6 CONCLUSIONS
This paper contributed a solid theoretical model of swarm tasks,

showing amathematical connecting between theCoordination Over-
head (CO) of the robots in the group task, to the global utility of

the system. We then connected between theCO of the whole run to

the decisions of robots in a single collision. This allows us to show

that in principle, the robots can maximize an individual reward for

each collision that will yield optimal global utility in the long run.

We have shown several solutions to challenges that may rise in

practice when applying the theoretical model. First, we developed a

continuous time variant of Q-Learning in order to address possible

inaccuracies of regular Q-Learning that may rise in such domains.

Second, we have suggested that the density of a robot can be used

as a state space in order for the robot to know how many robots

it collides with. Experiments show that the algorithms that we

used in order to overcome the gaps in previous work do improve

performance while holding guarantees.
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