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ABSTRACT
We study strategic behaviour in heterogeneous network formation,

where agents are grouped into types and can choose to create or

sever links whilst maximising their own private interest. We show

the conditions under which social networks exhibit segregated be-

haviour by groups, as a function of the individual benefits and the

costs of linking. By introducing the idea of an individual having a

degree of ’tolerance’ for others not of their own type, we further

show that this enriched framework is able to generate sophisti-

cated intra-group segregation, where a group can shun one of its

own members due to the connections that member has. Moreover,

we find through simulations that group segregation is an endemic

feature and that, as the cost of linking increases, networks converg-

ing to a stable state exhibit common characteristics with growing

certainty.
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1 INTRODUCTION
A significant aspect of real life social networks is that they exhibit

segregation: individuals who share common characteristics rou-

tinely are more closely associated to one another relative to others

who do not. This has been increasingly noticeable with the advent of

online social networks, particularly in connection with undesirable

phenomena such as informational bubbles, opinion polarisation and

fake news [17]. Understanding the formation of group segregation

in social networks is therefore a timely and important undertaking.

Over the past decades social networks have emerged in the

multi-agent systems community as a computational framework for

the analysis of distributed interaction. A number of frameworks

have been proposed to study their dynamics, with applications

such as product adoption [1, 2], opinion diffusion [5, 10, 22, 23]

and community detection [23, 24]. However, despite the study of

segregation dating back to Schelling [20, 21], its connection to social

networks still remains largely unexplored.

The model that is possibly closest in spirit to this enterprise is

the Jackson-Wolinsky (JW) model [15]. Here, a number of homoge-

neous agents connected in a social network can choose to further

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

connect to, or disconnect from, other agents, as a function of the

cost of linking and the benefits thereof. The key instrument for

analysis is the equilibrium concept of pairwise stability - where two

agents can form a link based on joint consent, but can unilaterally

delete a link if they so choose to. The main focus is on the tension

between stability and efficiency - in other words, the possibility

that the networks formed from private interests do not coincide

with the network structures that are optimal for society as a whole.

Jackson and Wolinsky’s contribution is limited to homogeneous

agents in a static setting. In real life social networks, though, indi-

viduals create and destroy links in line with their preferences for

the other individuals’ characteristics (defined as ‘types’ henceforth).

It is therefore natural to consider heterogeneous networks where

individuals have preferences over types and to establish under what

conditions they polarise themselves into clusters.

Our contribution. We generalise the JW model by adding het-

erogeneity among individuals’ types and studying connection dy-

namics as strategic decisions that can generate patterns of segrega-

tion. Specifically, we introduce heterogeneity into the benefits that

an individual of a given type attains from their direct connections

and how this is propagated through the indirect ones (defined as

value heterogeneity henceforth). We show under what conditions

stable clusters of different types emerge, as a function of individuals’

benefits and the cost of connecting.

Additionally, we introduce the notion of ‘tolerance’, allowing

agents of a given type to have different preferences for agents of

other types, inducing a further level of heterogeneity. We show that

these two forms of heterogeneity combined are able to generate

segregation among types (both inter-type and intra-type) during

the formation of a network, where a group can shun a member of

its own type due to the connections that member has. Our model

therefore provides a rich micro-founded theoretical framework

for how segregated groups form in social networks and reflects

empirical work on group formation in real-world social networks

[3, 23].

Finally, we extend our analysis to a dynamic setting, designing a

simulation platform to induce social network formation in line with

our theoretical framework. Simulations of generated networks, over

a variety of parameter distributions, highlight that social network

segregation is a common characteristic, even with a very low cost

of linking. Moreover, we find that as the cost of linking increases,

pairwise stable networks share common statistical properties with

increasing certainty. This means that while we might not be able

to predict the actual structure of a social network ex-ante, we can

more accurately predict its features (at high costs of linking).

Related literature. Besides the JW model, other contributions

have close connections to ours. Notably, the stream of literature on

homophily, i.e., the fact that individuals with similar characteristics
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tend to bunch together [19]. Among these are Jackson and Rogers

[13], who expand the JW model to generate small-world properties

by critically capping the benefits that an individual may get from

the wider network at a specific path length, and are able to gen-

erate communities in the network structure as a result. Following

this same line of research, the paper that is most closely related to

ours is by Gallo [9], who generates pairwise stable networks that

exhibit segregation and small-world properties, with the results

however being driven by cost, rather than value heterogeneity, and

by information asymmetry. Gallo introduces heterogeneity into

the knowledge of the network - some agents are fully aware of the

whole structure of the network, whilst others are less knowledge-

able. This is, in our view, unappealing, since segregation may not

necessarily be a function of the information that an agent has about

the nature of the network. Our framework therefore accounts for

social networks where the cost of connecting is very low and where

information about the network is highly accessible - arguably both

features of modern (online) social networks.

Other related papers, but somewhat further away from the scope

of ours, are [4], [6], [7] and [14], which focus on non-consensual

dynamics for forming and severing connections.

Introducing agent heterogeneity in strategic network formation

is not new. Galeotti et al. [8] used both value and cost heterogeneity

into their models. However, there are important differences between

their approach and ours. First, they characterise stable networks

using Nash equilibrium as the stability concept of choice. Second,

they do not conduct a general study of decay in the network. Rather,

they focus primarily on networks where the path length does not

matter in the magnitude of benefits. Third, they opt for (direct) cost

heterogeneity over (indirect) value heterogeneity.

Other literature has also explored heterogeneity in social net-

work formation. Johnson and Gilles [16] extend the JW model

by introducing spatial cost topology. Individuals are distributed

across a real number line (i.e. to represent their individual varying

characteristics), and the cost of directly connecting between indi-

viduals depends on the ‘length’ between them. Hojman and Szeidl

(2003) [11] also focus on cost heterogeneity, and specifically on core-

periphery star-based structures, using a refinement of the pairwise

stability equilibrium concept. McBride [18] takes an entirely new

approach highliting the impact of imperfect monitoring between

individuals to generate an equivalent of agent heterogeneity.

However, to our best knowledge, no paper has so far analysed

the role of value heterogeneity in a pairwise stable network setting

with decay, combining the equilibrium analysis of social networks

with the study of segregation as a property of their stable states. Our

focus on value heterogeneity is key, since segregation is driven by

agents’ preferences over both their direct and indirect connections,

applicable in social networks where the cost of connection is negli-

gible. Additionally, our simulations provide the first attempt to draw

generalisable insights into the characteristics of complex pairwise

stable social networks, based on a rich theoretical framework.

2 JACKSON-WOLINSKY NETWORKS
In this section we introduce the basic notation, definitions and

results from [15], which our model and results build upon.

2.1 Social Networks
Let ϕ = {1, ...,N } be a finite set of agents, each representing a node

in a graph, with the edges between the nodes modelling individual

connections. We define the complete graph дϕ to be the set of all

subsets of ϕ of size 2. From this, we can define any possible graph

on ϕ as belonging to the set {д | д ⊆ дϕ }. To specify a connection

between any two distinct nodes i, j ∈ ϕ, we denote ij to represent

the undirected link between nodes i and j in the relevant subset

of ϕ. Therefore, if ij ∈ д, then nodes i and j are directly connected;

and if ij < д, they are not.

We can now formalise the creation and destruction of links. Let

д + ij yield the graph generated by taking the original graph д, and
adding the link ij. Similarly, let д − ij yield the graph generated by

taking the original graph д, removing the link ij. In other words,

д + ij = д ∪ {ij}; and д − ij = д\{ij}.
Let N (д) = {i | ∃ j s .t . ij ∈ д} represent the set of nodes which

have at least one neighbour (i.e. direct connection), and n(д) =
|N (д)| to be the cardinality of this set.We can further define a path in

this graph. For a graph д, and nodes i1 and im , if there exists a set of

distinct nodes {i1, i2, ..., im } ⊆ N (д), and {i1i2, i2i3, ..., im−1im } ⊆

д, then there exists a path between i1 and im in д.
Let ∅ , д′ ⊆ д. If, for all i ∈ N (д′) and j ∈ N (д′) where i , j,

there exists a path in д′ between i and j - and, for any i ∈ N (д′)
and j ∈ N (д), it is such that ij ∈ д implies that ij ∈ д′ - then we can

say that д′ is a component of д.

2.2 Strategies and equilibria
In strategic network formation, agents choose to form or sever

links between each other whilst maximising their own private in-

terests. Hence, each agent needs to have a utility, or payoff function,

ascribing the value they gain from the current state of a graph д.
We first define the value attributable to an entire graph to be

v : {д | д ⊆ дϕ } → R, and forV to be the set of all possible functions

v . For example, in the true utilitarian sense, a suitable candidate for

v may be v(д) =
∑
i ∈ϕ ui (д) where ui : {д | д ⊆ дϕ } → R.

We further define an allocation rule, U : {д | д ⊆ дϕ } ×V → RN,
that determines how the value attributing to the whole graph is

allocated to the individual agents (i.e. the nodes) in the graph. Hence,

the function Ui (д,v) represents the utility/payoff an individual i
receives from a graph д with value function v . For example, in the

case above where v(д) =
∑
i ui (д), a suitable candidate forUi (д,v)

isUi (д,v) = ui (д) for all i ∈ ϕ.
To analyse the evolution of the network we opt for the equilib-

rium notion of pairwise stability. Given a value function v and an

allocation rule U , д is said to be pairwise stable if two conditions

hold:

∀ij ∈ д : BOTH Ui (д,v) ≥ Ui (д − ij,v)

AND Uj (д,v) ≥ Uj (д − ij,v)
(1)

∀ij < д : IF Ui (д,v) < Ui (д + ij,v)

THEN Uj (д,v) > Uj (д + ij,v)
(2)

We say that a graph д is defeated by д′ if д′ = д − ij and (1) does

not hold for ij under д, or if д′ = д + ij and (2) does not hold for ij
under д.
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Intuitively, pairwise stability requires individual agents to jointly

consent for a link to be formed between them, yet allows each

agent to destroy any existing links they may have independently

of anyone else. In particular, if a link exists in a graph between two

agents, then they must both benefit individually from such a link.

Likewise, if an agent is strictly better off adding a link to another,

then this link can only not exist if the other agent is strictly worse

off.

An interesting case emerges if both agents are indifferent about

maintaining a link or not. If ij ∈ д, and agents i and j are indifferent
between maintaining the link or not, then condition (1) states that

the link will be kept. If ij < д, then condition (2) is not violated

either. Therefore, if two agents are indifferent between a link or

not, then that link may, or may not, exist. For ease of simulation in

Section 5 and without loss of generality, we stipulate the following

additional assumption: if two distinct agents i, j ∈ ϕ are indifferent
between дi j = 1 and дi j = 0, then form the link such that дi j = 1.

So now links are formed when both agents are weakly better

off with the link than without it. Equivalently, we can re-state the

definition of pairwise stability, weakening condition (2) as follows:

∀ij < д : IF Ui (д,v) ≤ Ui (д + ij,v)

THEN Uj (д,v) > Uj (д + ij,v)
(3)

2.3 A Homogeneous Connections Model
We can now move to define the complete Jackson-Wolinsky model,

by first introducing the general utility function for an agent i , which
we denote Ui (д), representing the utility that i gains from graph

д and letting ui j ∈ R be the utility that i receives when directly

connecting to an agent j. On top of this, let δ ∈ (0, 1) be the decay

rate at which the utility from an indirect connection between agents

i and j is discounted by, raised by the geodesic distance (i.e. shortest
path length) between these two agents, denoted by dist(i, j). Finally,
we assume a cost of direct communication or connection between

any two agents i and j, denoted by ci j and such that ci j ∈ R+ .

Therefore, the general utility function can be written as:

Ui (д) =
∑
k ∈ϕ

δdist (i,k )uik −
∑

k : ik ∈д

cik (4)

Notice that equation (4) embodies both value and cost hetero-
geneity in its current formulation. uik can differ among different

pairings of i and k , allowing for heterogeneity among the benefits

that individuals can gain from connections, either direct or indirect.

Similarly, cik can differ among pairings of i and k as well, repre-

senting that there may be different costs of connection for different

individuals. Further, note that every individual receives a benefit

uii , without any discount, irrespective of what connections they

have. If there is no path between i and j, then dist(i, j) → ∞, with

the result that no benefit is attained to either node from a lack of

such a path.

Jackson and Wolinsky place a series of constraints on equation

(4) to generate a homogeneous agent model. In particular, they

assume symmetry, with ci j = c for all ij (hence cost homogeneity),

and ui j = 1 for all ij (hence value homogeneity).

They then proceed to prove the following proposition for a char-

acterisation of pairwise stable networks, which we state for refer-

ence:

Proposition 2.1. (Jackson and Wolinksy (1996) [15]). Assume a
symmetric connections model with Ui (д) = ui (д). Then the following
facts are true:

(i) A pairwise stable network has at most one component.

(ii) For c < δ − δ2, the unique pairwise stable network is the
complete graph, дϕ .

(iii) For δ −δ2 < c < δ , a star encompassing all players is pairwise
stable, but not necessarily the unique pairwise stable graph.

(iv) For δ < c , any pairwise stable network which is non-empty is
such that each player has at least two links and thus is inefficient.

Whilst the homogeneous model is powerful in the sense that

it is capable of generating a relatively small subset of pairwise

stable networks over large cost ranges, all agents belong to the

same type. Therefore it is incapable of explaining how segregation

occurs between different groups. Hence, it is necessary to extend it

with heterogeneous agents, which we proceed to do next.

3 HETEROGENEOUS DYNAMICS
The study of segregation in social network formation requires

agents to have a ‘type’ associated with themselves. In our model

types are simply encoded as elements ti ∈ [0, 1], one for each agent

i , with T being the set of all available types. We then redefine the

payoff function that allocates a utility value to agent i with type ti
from a direct connection to another agent j with type tj under graph
д as ui (ti , tj ,д) ∈ R, and specify that the allocation rule generates

a utility for the agent i under the standard rule:

Ui (д) =
∑
k ∈ϕ

δdist (i,k )ui (ti , tk ,д) −
∑

k : ik ∈д

cik (5)

Our formulation allows for a number of natural assumptions

to be placed upon the nature of ui (ti , tj ,д). In particular, we will

assume that every agent would prefer to connect with individuals

who have a type closer to their own. Thus:

ui (ti , tj ,д) < ui (ti , tk ,д) where tj < tk ≤ ti (6)

ui (ti , tj ,д) < ui (ti , tk ,д) where tj > tk ≥ ti (7)

ui (ti , tj ,д) = ui (ti , tk ,д) where tj = tk (8)

We further impose cost homogeneity for all agents as per [15].

To showcase our model, we now proceed to state and prove some

propositions, focussing once more on the characterisation of pair-

wise stable networks. To more neatly illustrate the framework’s

flexibility in generating varying pairwise stable architectures under

different parameter constraints, we choose to restrict ourselves

to networks with only two types T1 and T2 which, notice, can be

naturally lifted to richer structures. In what follows, we describe

patterns of segregations in case the discounted utility of connect-

ing across types is higher than its cost (Proposition 3.1), or not
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(Proposition 3.2). Then we describe the exact structure of segre-

gated equilibria when connecting across types induces disutility,

with only two types (Proposition 3.3) or more (Theorem 3.6).

Proposition 3.1. Assume a heterogeneous connections model with
typesT = {T1,T2} drawn from the [0, 1] interval. Further assume that
both δu(T1,T2,д) > c and δu(T2,T1,д) > c . Finally, w.l.o.g., assume
that u(T1,T2,д) ≥ u(T2,T1,д). Then:

(i) For c < (δ − δ2)u(T2,T1,д) ≤ (δ − δ2)u(T1,T2,д), the complete
network is the unique pairwise stable network.

(ii) If (δ − δ2)u(T1,T2,д) < c < (δ − δ2)u(T1,T1,д) and (δ −

δ2)u(T2,T1,д) < c < (δ − δ2)u(T2,T2,д), then any pairwise stable
equilibrium will have complete connections between members of the
same type. If c < (δ−δ3)u(T1,T2,д) and c < (δ−δ3)u(T2,T1,д), each
member of a type has a unique, and single, connection to a member
of the opposite type, if one is available. If c > (δ − δ3)u(T1,T2,д) and
c > (δ −δ3)u(T2,T1,д), then there is only one connection between the
two types.

(iii) If (δ−δ2)u(T1,T1,д) < c < δu(T1,T2,д) and (δ−δ2)u(T2,T2,д) <
c < δu(T2,T1,д), a star, with the centre of any type, is a pairwise
stable network, but it may not be unique.

Proof. (i) By c < (δ − δ2)u(T2,T1,д) ≤ (δ − δ2)u(T1,T2,д), we
have that c < (δ − δ2)u(T1,T1,д) and c < (δ − δ2)u(T2,T2,д). Con-
sider a graph д in which an agent i of type T1 is not directly con-

nected to an agent j of typeT2. For agent i , if we form the link ij , then
i gets a benefit of at worst (δ −δ2)u(T1,T2,д)−c (in giving up an in-

direct connection to j). Therefore ui j = u(T1,T2,д+ ij)−u(T1,T2,д)
is strictly positive. Similarly the same applies to j with u ji > 0. The

same analysis also follows for i and j if they are of the same type.

Therefore there cannot be any pairwise stable graph д which is not

completely connected.

(ii) By c < (δ − δ2)u(T1,T1,д), all agents of type T1 are directly
connected to one another. The same applies to agents of type T2
since c < (δ − δ2)u(T2,T2,д). Assume that there exists a pairwise

stable graph д where two agents of the same type, say k and l of
typeT1 w.l.o.g, both have a direct connection to an agent of typeT2,
saym. We know that k and l are directly connected. If k chooses

to delete their link with m, then they get a marginal payoff of

c −(δ −δ2)u(T1,T2,д) > 0, so there will be no link between k andm.

If there are more than two agents of type T1 connected to the same

agent of typeT2, the same argument applies. Equally, if k and l were
of typeT2, andm of typeT1, the same argument applies. Thus, there

can be at most one direct connection between agents of different

types. Moreover, no agent of a single type will have more than

one connection to the component consisting of agents of the other

type, since generating the second connection will yield a marginal

utility of (δ − δ2)u(T1,T2,д) − c < 0 or (δ − δ2)u(T2,T1,д) − c < 0

as the direct connection will forego the benefits of an indirect

connection valued at δ2. Finally, we show that a graph д consisting

of two separate complete networks of the individual types, non-

overlapping, is not pairwise stable. If c < (δ − δ3)u(T1,T2,д) and
c < (δ − δ3)u(T2,T1,д), then, w.l.o.g, an agent i , of type T1, can
directly connect to an agent of the other component of type T2
and gain a minimum of (δ − δ3)u(T1,T2,д) − c > 0. The same

applies for agents of the other type. Thus, the unique pairwise stable

network is with all agents of the same type directly connected to

one another, and where every agent of this type, if a connection is

available, will have a unique direct connection to an agent of the

other type. If c > (δ − δ3)u(T1,T2,д) and c > (δ − δ3)u(T2,T1,д),
then since c < δu(T1,T2,д) and c < δu(T2,T1,д), there will be only
one connection between the two types.

(iii) Consider a graph д that is a star, i.e. one agent is the centre

node, and all other agents have a direct connection to the central

agent. W.l.o.g say that the central agent is of type T1. This agent
has no incentive to delete links to either agents of the other type

(since c − δu(T1,T2,д) < 0), or to agents of the same type (since

c−δu(T1,T1,д) < c−δu(T1,T2,д) < 0). Consider a peripheral agent,

w.l.o.g, of typeT1. This agent has no incentive to connect to another
periphery agent of either type, since (δ − δ2)u(T1,T2,д) − c < 0

and (δ − δ2)u(T1,T1,д) − c < 0. Obviously, a periphery agent will

not want to delete the link with the centre agent irrespective of its

type since c < δu(T1,T2,д) < δu(T1,T1,д). Therefore, the star is a
pairwise stable network. □

Propositions (3.1)(i) and (3.1)(ii) show that the introduction of

heterogeneity still allows for unique pairwise equilibria. In partic-

ular, we are able to showcase that complete integration of types

is still possible as unique equilibrium, albeit under restrictive cost

ranges.

Proposition (3.1)(iii) allows for multiple pairwise stable equilibria.

The star, for example, with either type at its centre, is a pairwise

stable equilibrium. What this highlights is that in networks with

different types, and where types are in communication with one

another (i.e. there is a degree of integration), the resulting network

structure may exhibit a degree of centrality. These networks may

have particular agents who act as ‘gatekeepers’ to other individuals

of the same type, and all others have to communicate through these

gatekeepers to gain access to others. This feature is indicative of a

small-worlds property common in many social networks – see for

instance [12].

Proposition (3.1) is also interesting in that no agent receives any

disutility from connections, either direct or indirect, with agents of

the other type. Regardless, we still do not get complete integration

between communities. This is because of the presence of externali-

ties, which is also typical of the homogeneous connections model.

Agents attempt to economise on their direct connections if the cost

of connecting is too high. Instead they rely on the positive benefits

(i.e. externalities) that their indirect connections provide.

For completeness, we also consider the case where a direct con-

nection to a member of the other type yields a cost instead of a net

gain. It is important to notice that the proposition below does not

rely on an agent receiving disutility from an indirect connection to

an agent of the other type.

Proposition 3.2. Assume a heterogeneous connections model with
types T = {T1,T2} drawn from the [0, 1] interval. Further assume
that c > δu(T1,T2,д) and c > δu(T2,T1,д). Then, for any agent of
a given type, if they have a direct connection to a second agent of
another type, then this second agent must have at least two links in
any pairwise stable network.
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Proof. This is a complementary proposition to Proposition

(2.1)(iv). Suppose a non-empty networkд is pairwise stable whereby
an agent i , w.l.o.g, of type T1 has a direct connection to an agent j
of type T2. Suppose further that j’s only direct connection is with

i . Then i can strictly benefit by deleting its link with j and receive

c − δu(T1,T2,д) > 0. Hence д is not pairwise stable. □

The presence of agents of different types in the same component

of a pairwise stable networks is entirely possible. For example, the

net cost of a direct connection between agents of different types

may be outweighed if an agent of a specific type brings enough

indirect connections to be worth connecting to. However, the driver

of such network formation lies primarily in the cost of connection,

and impacts all types equally.

The true value of heterogeneous models is to assess situations

where an agent actually gains disutility from a connection, either

direct or indirect, to an agent of a differing type. The important

question is then whether all non-empty pairwise stable networks

are truly segregated, in the sense that agents of a given type re-

side in their own distinct components. The following proposition

characterises the nature of pairwise stable networks under this

framework.

Proposition 3.3. Assume a heterogeneous connections model with
types T = {T1,T2} drawn from the [0, 1] interval. Assume further
that both 0 > u(T1,T2,д) and 0 > u(T2,T1,д). Finally, w.l.o.g, assume
that u(T1,T1,д) ≥ u(T2,T2,д). Then:

(i) Any non-empty acyclic pairwise stable network consists of at
most two separate components. There is no path in either component
which contains agents of both types. Each component is homogeneous
in terms of types.

(ii) If c < (δ − δ2)u(T2,T2,д) ≤ (δ − δ2)u(T1,T1,д), the unique
acyclic pairwise stable network consists of two separate components,
each only consisting of agents of the same type, completely connected.

Proof. (i) Suppose an acyclic pairwise stable network д has at

least one non-trivial component. Further suppose that one of these

components contains agents of types T1 and T2. By definition, an

agent i of type T1 must have a direct connection to an agent j of
type T2. For the link ij to occur in a pairwise stable network, then i
must be gaining an indirect benefit from its connection to j since
the direct connection to j yields a disutility of δui (T1,T2,д) − c < 0

(and similarly for j as well). This indirect utility is only attainable

from a component called B1 accessed through the shortest path

via j (otherwise i would gain the indirect benefit from another

path). Denote the utility of the component B1 as UB1
via j. Then

the utility for i from link ij is δ2UB1
+ δui (T1,T2,д) − c > 0 since

the component B1 is at a path length of 2 away from i .
The component B1 must contain at least one agent of typeT1, say

k1, that has at least one direct connection to an agent of typeT2. By
Proposition (3.2), k1 must have at least two links. An agent of type

T2 (in this case j) will only want to directly connect to k1 if there
is a component accessible only through k1 which contains agents

of type T2. Call this component B2, and let an agent of type T2 in
B2 bem2 (to which k1 is connected to). Moreover, B2 ⊂ B1 since
д is acyclic. Similarly k1 will only want to maintain a connection

Figure 1: On the left, a cycle consisting of two types, which
is pairwise stable under conditions provided by Example 3.4.
On the right, a line network consisting of three types, which
is pairwise stable as per the conditions in Example 3.7.

to component B2 if it contains agents of type T1 that are directly
connected tom2. These agents of typeT1 themselves will only want

to directly connect tom2 if there is a component B3 ⊂ B2, accessible
only throughm2, which contains agents of type T1.

Thus the problem repeats itself over and over again, without

termination. As the graph has a finite number of agents, at some

point an agent of, say w.l.o.g, type T1 will directly connect to a

component (or singleton) only consisting of typeT2. Thus any links
between these agents will be severed, and links between types T1
andT2 will be severed recursively. Thus д cannot be pairwise stable

where there is a path containing agents of different types.

(ii) By Proposition (3.3)(i) we know that agents of the same type

will all reside in the same component with no other agents of the

other type for any acyclic graph. If c < (δ − δ2)u(T2,T2,д) ≤ (δ −

δ2)u(T1,T1,д), then two applications of Proposition (2.1)(ii) to the

two components individually will generate completely connected

components. □

Proposition (3.3) has remarkable consequences. In particular, it

predicts that if there is any disutility between two different types

in a heterogeneous connections model (with only two types), then

complete segregation between the two types, for any cost range,

will be a feature in acyclic non-trivial pairwise stable networks.

Note however that in cyclic graphs, agents of either types can

still have a direct connection, as the following counter example

shows.

Example 3.4. Consider 6 agents, 3 of type T1 and 3 of type T2, as
depicted in Figure 1 (left side). Moreover, suppose that each agent

has two connections to agents of the other type only (hence a cycle

of alternating types). Consider an agent i of typeT1. i will not want
to delete one of its two links if c − δui (T1,T2,д) − δ2ui (T1,T1,д) +
δ4ui (T1,T1,д)+ δ

5ui (T1,T2,д) < 0. i will further not choose to link
with another agent of typeT1 if c > δui (T1,T1,д) −δ

2ui (T1,T1,д)+
δ2ui (T1,T2,д) − δ3ui (T1,T2,д). These provide bounds on c . Some

algebraic steps the yields the inequality ui (T1,T1,д)(2δ − 1 − δ3) >
ui (T1,T2,д)(δ (1−δ )−(1−δ

4)). The RHS of this inequality is positive

asui (T1,T2,д) < 0 and 1−δ4 = (1−δ2)(1+δ2) = (1−δ )(1+δ )(1+δ2).
Thus (1 − δ )(1 + δ )(1 + δ2) > (1 − δ ) > δ (1 − δ ). Suppose that

ui (T1,T2,д) is extremely close to 0. Consider 2δ − 1 − δ3. In the

positive domain for δ this expression has real roots at δ = 1 and

δ =
√
5

2
− 1

2
with the expression itself being positive between these

two real roots. Thus the cost range for c is valid, and the cycle is
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pairwise stable (the same analysis can be conducted for agents of

the other type as the problem is symmetric in approach).

The reason for why the proof for Proposition (3.3) does not carry

through to cyclic graphs is due to the refining of component sizes.

For two agents that provide disutility to one another to directly

connect, there must be components linked to these agents that

provide both of them with utility. Our proof above shows that, with

only two types in an acyclic network, there is no stable component

that is not a singleton that allows this to occur. We reduce the size

of these components since the graph is acyclic as the proof iterates

until there are no more agents left in the network. If the graph is

cyclic, this argument does not hold as the counter example above

shows.

A key question therefore arises: whether it is possible to connect

types, which generate disutility to one another, in a heterogeneous

acyclic network with more than two types. We first fix a useful

definition.

Definition 3.5. (Gross disutility) An agent i with typeT1 is said to
provide gross disutility to agent j with type T2 if uj (T2,T1,д) < 0.

We now state a general theorem which enables the existence of

acyclic pairwise stable networks to occur where agents of differ-

ent types who provide gross disutility to one another are directly

connected.

Theorem 3.6. Let the graph д be acyclic. Assume a heterogeneous
connections model with types given by T = {T1, ...,Tm }, drawn from
the [0, 1] interval. Consider two types, where either or both provides
gross disutility to one another. Suppose further that there is a direct
connection between agents of these two types, say, w.l.o.g, between
agents i of typeT1 and j of typeT2. Let A be the component accessible
via i , and B be the component accessible via j. Then in any pairwise
stable network, if i faces gross disutility from its connection to j , then B
must contain at least one agent of a different type, w.l.o.g say T3, that
provides utility to i . Similarly, the same applies for j with component
A.

Proof. This is a repeated application of Proposition (3.3). Con-

sider an agent i of type T1 directly connected to agent j of type T2.
Let A be the component accessible via i , and B be the component

accessible via j. Suppose further that i gets gross disutility from

its connection to j. If B contains only agents of type T2, then i will
sever its connection to j . If B only contains agents of typeT1, then j
will want to severe its connection to B. If B contains agents of types

T1 and T2, then by Proposition (3.3), д cannot be pairwise stable.

Therefore, B must contain at least one agent of a separate type T3
that provides utility to i . The same analysis can be applied toA. □

Theorem 3.6 highlights the importance of indirect connections

in fostering links between types that yield gross disutility to one

another. An agent i may choose to tolerate a connection to a second

agent j that provides gross disutility to i if j has valuable connections
with high enough benefits for i . In other words, a greater variety

of types can mean a pairwise stable graph is better connected. The

following example showcases the mechanism behind Theorem 3.6.

Example 3.7. Consider a graph д, with three types T1, T2, and
T3, as depicted in Figure 1 (right side). There are 4 agents: a and b

of type T3, c of type T1 and d of type T2. c and d provide gross

disutility to one another. Consider a chain where a is directly

connected to c , c to d , and d to b. Assume for simplicity that

ua (T3,T1,д) = ub (T3,T1,д) = ua (T3,T2,д) = ub (T3,T2,д) and as-

sume symmetry via ua (T3,T3,д) = ub (T3,T3,д). Further, assume

uc (T1,T1,д) = ud (T2,T2,д) and uc (T1,T2,д) = ud (T2,T1,д). As a
final step, assume uc (T1,T3,д) = ud (T2,T3,д).

Let us first consider agent a (analysis is the same for b). a will

not delete its link if:

c − δua (T3,T1,д) − δ2ua (T3,T2,д) − δ3ua (T3,T3,д) < 0 (9)

a will not add a link to d if:

(δ − δ2)ua (T3,T2,д) + (δ
2 − δ3)ua (T3,T3,д) − c < 0 (10)

a will not add a link to b if:

δua (T3,T3,д) − δ3ua (T3,T3,д) − c < 0 (11)

A close inspection reveals that equation (11) dominates equation

(10), since ua (T3,T3,д) > ua (T3,T2,д). Equations (9) and (11) are

consistent if
ua (T3,T1,д)
ua (T3,T3,д)

> 1−2δ 2

1+δ . Now consider c (the analysis is

the same for d). c will not delete its link with a if:

c − δuc (T1,T3,д) < 0 (12)

c will not delete its link with d if:

c − δuc (T1,T2,д) − δ2uc (T1,T3,д) < 0 (13)

c will not connect with b if:

δuc (T1,T3,д) − δ2uc (T1,T3,д) − c < 0 (14)

Observe now that equation (13) dominates equation (12), since

δ < 1 and uc (T1,T2,д) < 0. Finally, notice that equations (13) and

(14) are consistent if 2δ − 1 > −
uc (T1,T2,д)
uc (T1,T3,д)

> 0. This completes

the stability analysis by symmetry. For example, such a network is

pairwise stable if the gross disutility between c and d is very small,

and the utility that a and b get from c (and therefore d) is similar to

the direct utility they would get by directly connecting themselves.

4 ADDING TOLERANCE
There are natural limitations to the heterogeneous connections

model. In real world examples we see networks bifurcated with two

distinct parties still communicating with one another. For example,

two political parties may be opposed from an official policy point

of view, yet some members of either party may occasionally speak

to one another. Naturally these networks do not always feature

cycles. We therefore need a richer framework than the one we have

currently designed so far.

Our solution is to introduce heterogeneity between members of

the same type. Consider for example two agents of a given type:

one such member may choose to shun other types due to the gross

disutility associated with a direct connection. However, the other

member may be tolerant of some other types, and so might be

willing to connect to some other types. Therefore, we introduce the

idea that members of the same types may have varying degrees of

tolerance for members of other types.
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The way this can be achieved is by adjusting the utility function

that dictates the utility agent i gets from its connection to agent

j. In the previous section we defined this as ui (T1,T2,д) where T1
is the type of i and T2 is the type of j. If we want to introduce

heterogeneity within types, we need an additional parameter for

this functional form. We define the degree of tolerance as σ ∈ [0, 1].

Thus, the utility function is now defined as ui (T1,T2,σi ,д).
We further posit the following relational features for the utility

functions with respect to the degree of tolerance, that says that an

agent’s utility from a connection to another is weakly increasing

as the agent’s degree of tolerance increases:

ui (ti , tj ,σi + ϵ,д) ≥ ui (ti , tj ,σi ,д) ∀ϵ > 0 (15)

We further provide additional definitions regarding the impact

of the tolerance in this more general framework.

Definition 4.1. (Minimum absolute tolerance (MAT)). Let the set
of degrees of tolerance, for which an agent i of type Ti will have
a non-negative utility from a connection to any other agent, be

βi = { σi | ui (Ti ,Tj ,σi ,д) ≥ 0,∀Tj ∈ T }. The minimum absolute
tolerance σi MAT

for agent i is the lowest degree of tolerance in the

set βi for which this is true. In other words, σi
MAT = in f (βi ).

Definition 4.2. (Minimum absolute intolerance (MAI)). Let the set
of degrees of tolerance, for which an agent i of type Ti will have a
negative utility from a connection to any other agent other than to

agents of its own type Ti be:

αi =

{
σi

���� { ui (Ti ,Ti ,σi ,д) ≥ 0

ui (Ti ,Tj ,σi ,д) < 0 i f Ti , Tj

} }
The minimum absolute intolerance σi MAI

for agent i is the high-
est degree of tolerance in the set αi for which this is true. In other

words, σi
MAI = sup(αi ).

The two definitions above allow us to showcase a pairwise stable

network with two types, where agents of the same type shun one

of their own members. This is achieved by using differing levels

of tolerance between types and also within a type (with N nodes

each). Suppose that all agents of type T2 have a high degree of

tolerance, say the minimum absolute tolerance level,MAT . Further
suppose that (N − 1) agents of type T1 have a degree of tolerance
equal to the minimum absolute intolerance level, MAI , with the

remaining agent of type T1 having a degree of tolerance of MAT .
Assume, w.l.o.g., that the cost of connection is zero. Finally assume

that |Nδui (T1,T2,σi
MAI ,д)| > |ui (T1,T1,σi

MAI ,д)|. Recall that
the definition of MAI means that agents of a specific type gets

disutility from its connections with an agent of a separate type.

Then a pairwise stable network is one where all nodes of type T2
are completely connected, and are also completely connected with

the one node of type T1. The remaining nodes of type T1 are in

their own separate component, completely connected. They do

not want to connect to the lone agent of type T1 since the indirect
connections to agents of type T2 generates enough disutility such

that they would rather not connect.

5 EXPERIMENTAL RESULTS
The introduction of tolerance into the heterogeneous connections

model has added further complexity into the framework, when

results are highly dependent on an increasingly large parameter

space that considers not only the types of agents, but also their

tolerance level for other types. Whilst further theoretical analysis

is certainly desirable, it is useful to explore the nature of pairwise

stable networks by computer-aided simulation.

We set up a platform to simulate a dynamic network formation

process, at varying costs of linking to generate statistical insights.

This requires three components: the starting state of the network,

the terminating conditions, and the process by which links are

formed or severed. We begin every network formation process with

the empty network (i.e. a network full of singleton nodes) since

all link formation must be based as per the rules according to our

framework.

As for link creation or destruction between nodes, we proceed

as follows. We test every possible edge that the network could have

(i.e.
N (N−1)

2
checks for N nodes) according to equations 1 and 3. If

a link has not been formed for the edge under consideration, we

assess whether both agents would rather form the link; if the link

has been formed prior, we assess whether either agent is strictly

better off without it. Based on this, we appropriately add or delete

links between nodes. The order of potential edges to assess whether

a link should exist or not is randomly selected.

We consider two terminating conditions. The first case is that no

links are created or severed when all potential edges are assessed -

i.e. the network is pairwise stable. The other case is that the network

has reached a state that it has previously visited in the formation

process, in other words, a cycle. Whilst the existence of a cycle

is not sufficient to say that a network will never reach a pairwise

stable state, a priori we are unable to know this, so we terminate the

algorithm upon detecting a cycle to avoid cases where a pairwise

stable state might not exist at all.

We consider a three-type model, with 5 nodes each of types 0,

0.5 and 1. The decay rate is set at 0.9. We initialise the tolerance

values as per the uniform distribution on the unit interval since we

want to assess how networks form given various tolerance values.

We consider costs of linking from 0.1 to 0.9 at 0.1 increments, with

10, 000 simulations per increment. The utility function takes the

functional form below, encapsulating symmetry in preferences and

allowing for disutility if two agents are of sufficiently different

types:

ui (Ti ,Tj ,σi ,д) = exp

(
−
1

2

(
Ti −Tj

σi

)
2
)
− 0.2 (16)

Over the simulated networks, we calculate themean and variance

of the number of cliques and degree centrality. These measures

capture how directly connected the network is. To capture the

concept of indirect connections, we design our own segregation

measure where Ti refers to a type drawn from the [0, 1] interval

and T ′
i to be the set of agents with type Ti :

STi ,Tj =


1

|T ′
i |

∑
k ∈T ′

i

∑
l ∈T ′

j \{k }

1

dist (k,l ) .
1

|T ′
i |−1

if Ti = Tj

1

|T ′
i |

∑
k ∈T ′

i

∑
l ∈T ′

j

1

dist (k,l ) .
1

|T ′
j |

if Ti , Tj
(17)

Our segregation measure is an inverse measure, bounded below

by 0 (for the empty network) and above at 1 (for the complete
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Figure 2

Figure 3

Figure 4

network), and is applicable for any pairwise stable network archi-

tecture. Moreover, it captures the notion of intra-group segregation

(for STi ,Ti ) as well as inter-group segregation (for STi ,Tj and i , j).

The computational results yield three main findings. With regard

to the number of cliques and degree centrality, unsurprisingly, we

find a negative correlation between the average number of cliques

and the cost of linking - as the cost of linking gets more expensive,

the network is less directly connected (above 0.7 the empty network

is the only pairwise stable network, hence the number of cliques

is 15 and degree centrality is 0). This can be observed in Figure 2.

The more surprising finding is that the variance in the number of

cliques drops markedly as the cost of linking increases, as featured

in Figure 3. At low costs of linking in particular, if there is a marginal

increase in cost, then the variance in the number of cliques drops by

far more than at higher costs of linking. This feature is consistent

with degree centrality as well.

This suggests that at low costs of linking (exempting complete

networks and cost ranges where unique pairwise stable networks

can be derived), there aremore permissible pairwise stable networks

that could have a variety of architectures. What it also suggests is

that if we observe a wide range of network structures across many

separate samples for a given scenario, then the cost of linking is

likely to be low. As the cost of linking increases, we can better iden-

tify the statistical features of any pairwise stable network. Based

on these results we cannot say with certainty that there are fewer

pairwise stable networks as the cost of linking increases - but we

can say that such pairwise stable networks share increasingly more

similar statistical features as the cost of linking increases. Even

though we might not be able to predict the exact structure of a pair-

wise stable network, we can say, with a high degree of certainty,

what features it can exhibit, in situations where the cost of linking

is known to be relatively high.

We finally show all 9 possible segregation scores in Figure 4.

As the cost of linking increases, we see a reduction in all segrega-

tion scores, implying that inter-group and intra-group segregation

is increasing (recall that our score metric is an inverse measure).

However, beyond a cost of linking of 0.4 - 0.5, the intra-group segre-

gation score actually increases to the detriment of the inter-group

segregation score. This suggests agents of a particular type can

substitute their inter-type connections in favour of intra-type con-

nections at high costs of linking. A variety of types might not lead

to more integration in a social network if the cost of linking is high.

6 CONCLUSION
We have developed a model of strategic behaviour in social net-

work formation, showing analytical conditions under which clus-

tering emerges among individuals belonging to different types. It

is achieved via two kinds of heterogeneity - both across types of

agents, but also within the same type of agent through what we

define as ‘tolerance’ of others. Our theoretical model is able to gen-

erate both intra-group and inter-group segregation, and accounts

for the impact of both direct and indirect connections.

We have further extended the model to a dynamic setting, with

a surprising finding - that as the cost of linking increases, pairwise

stable networks increasingly share the same statistical character-

istics with increasing certainty. This suggests that while we may

not be able to predict ex-ante the end state of a social network,

depending on the cost of linking, we may be more able to predict

its underlying features and characteristics more precisely.

Our paper has multiple avenues for expansion. First large net-

work simulations with many agents of multiple types would be a

worthy exercise, to see if the findings found here adjust with the

network size. Second, the model presented here is one of perfect

information. In reality, agents have imperfect information of parts

of the network which they are connected to, which motivates anal-

ysis of an imperfect information model. Finally, this model presents

a powerful way to explore how diffusion of ideas and habits prop-

agate through social networks. The model can be extended to a

two-stage game: in the first stage agents connect to one another

as in this paper; in the second stage, their types can be adjusted

depending on who they are connected to, and thus influenced by.
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