
Marginal Cost Pricing with a Fixed Error Factor in Traffic
Networks

Guni Sharon

Texas A&M University

College Station, Texas, USA

guni@tamu.edu

Stephen D. Boyles

The University of Texas at Austin

Austin, Texas, USA

sboyles@mail.utexas.edu

Shani Alkoby

The University of Texas at Austin

Austin, Texas, USA

shani.alkoby@gmail.com

Peter Stone

The University of Texas at Austin

Austin, Texas, USA

pstone@cs.utexas.edu

ABSTRACT
It is well known that charging marginal cost tolls (MCT) from self

interested agents participating in a congestion game leads to op-

timal system performance, i.e., minimal total latency. However, it

is not generally possible to calculate the correct marginal costs

tolls precisely, and it is not known what the impact is of charging

incorrect tolls. This uncertainty could lead to reluctance to adopt

such schemes in practice. This paper studies the impact of charging

MCT with some fixed factor error on the system’s performance. We

prove that under-estimating MCT results in a system performance

that is at least as good as that obtained by not applying tolls at

all. This result might encourage adoption of MCT schemes with

conservative MCT estimations. Furthermore, we prove that no local

extrema can exist in the function mapping the error value, r , to
the system’s performance, T (r ). This result implies that accurately

calibrating MCT for a given network can be done by identifying an

extremum inT (r )which, consequently, must be the global optimum.

Experimental results from simulating several large-scale, real-life

traffic networks are presented and provide further support for our

theoretical findings.
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INTRODUCTION
Self interested agents that are routed in a congestible network,

such as vehicles in a road network or packets in a data network,

impose a user equilibrium (UE) that is often far worse than the

system optimum (SO) flow [25]. Charging marginal cost tolls (MCT),

in which each agent is charged a toll equivalent to the damage

it inflicts on all other agents, results in a UE that achieves SO

performance [1, 2, 21].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Calculating the MCT for a given agent, on a given path, i.e.,

the damage that the agent in question inflicts on other agents by

traversing the path in question, is very challenging without mak-

ing several restrictive assumptions (e.g., well-defined and known

latency functions) that do not hold in most traffic models and cer-

tainly not in real-life traffic. Recent work [27, 28] suggested a model

free technique, denoted ∆-tolling, for approximating MCT.

Since ∆-tolling, or any tolling scheme that approximates MCT

for that matter, is not guaranteed to result in the exact MCT, no

optimality guarantees can be given regarding the system’s perfor-

mance. In fact, applying tolls different from MCT might result in

a system performance that is worse than not applying tolls at all.

This fact might deter public officials from implementing any tolling

scheme that is not guaranteed to impose the exact MCT.

This paper examines the impact of imposing inaccurate MCT

on the system’s performance. Specifically, we provide conditions

under which the system’s performance will not be worse than

applying no tolls, i.e., the system will not be worse off by imposing

the tolling scheme. This paper establishes that charging a toll that

is off by a factor, r , from the true MCT will not hurt the system’s

performance if 0 ≤ r ≤ 1 (i.e., if MCT is underestimated by a

constant factor). Moreover, this paper proves that the function

mapping r to the system’s performance (total travel time) has a

single (global) minimum and no local extrema. This fact implies

that calibrating schemes for evaluating MCT e.g., ∆-tolling, can be

carried out by identifying a minimum, which is guaranteed to be

the global optimum.

Finally, experimental results from a traffic simulator are pre-

sented for different traffic scenarios. The experimental results match

our theoretical claims by showing that, across various traffic sce-

narios, a global optimal flow is achieved for r = 1 and no extrema

exist elsewhere.

PRELIMINARIES
This paper assumes a standard flow model that is common in the

routing and congestion games literature [21, 25, 31]. The termi-

nology for this model follows Sharon et al. ([2018]) and is given

next.
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The flow model
The flowmodel in this work is composed of a directed graphG(V ,E),
where each link e ∈ E is affiliated with a latency function. Addi-

tionally, the flow model requires a demand function R(s, t) → R+

mapping a pair of vertices, s, t ∈ V 2
, to a non-negative real number

representing the required amount of flow between source, s , and
target, t .1 A traffic flow scenario is a {G,R} pair.

The variable fp represents the flow volume assigned to a path, p.
Similarly, fe is the flow volume assigned to link e . Note that, a flow
assignment to all paths implies a unique assignment to all links. By

contrast, a flow assignment to all links does not necessarily imply

a unique assignment to all paths. As an example, assume that link

e1 is assigned a flow of fe1. Further assume that e1 is part of two
paths, p1 and p2, the flow assignment requires that fe1 = fp1 + fp2
which might produce a range of possible flow assignments for p1
and p2. Hereafter we use the term flow or f to represent a unique

links flow assignment (which might be non-unique with respect to

paths flow assignment).

A flow is defined as valid if:

• fp ≥ 0 for all paths p, that is, no path is assigned negative

flow.

• the flow on each link (fe ) equals the summation of flows on

all paths of which e is a part. That is, fe =
∑
p∈Pe fp where

Pe is the set of acyclic paths that include link e .

Definition 1 (feasible flow). A flow is defined as feasible if it is
valid and the traffic demand is satisfied, that is,

∑
p∈Pst fp = R(s, t)

for all demand pairs (s, t), where Pst is the set of acyclic paths leading
from s to t .

Each link e ∈ E has a latency function le (fe ) which, given a

flow volume (fe ), returns the latency (travel time) on e . The follow-
ing regularity conditions on the latency function are a standard

assumption in the transportation literature [20]

Assumption 1. The latency function le (fe ) is non-negative, con-
vex, and its derivative, with regards to fe is positive for each link
e ∈ E.

The above assumption implies that, travel-time cannot be neg-

ative, more vehicles results in larger travel time, and that the ith

vehicle causes a larger increase in travel time compared to the jth

iff i > j.
The latency of a path, p, for a given flow, f , is defined as lp (f ) =∑
e ∈p le (fe ). A feasible flow f is defined as a user equilibrium (UE)

if for every s, t ∈ V 2
and pa ,pb ∈ Pst with fpa > 0 it holds that

lpa (f ) ≤ lpb (f ) (see Lemma 2.2 in [25]). In other words, atUE, no
amount of flow can be rerouted to a path with lower latency when

the rest of the flow is fixed.

Define the total travel time associated with a link e as Te (fe ) =
le (fe )fe . The total system travel time, for a given flow f , is T (f ) =∑
e ∈E Te (fe ).
A feasible flow f is defined as a system optimum (SO) if T (f ) is

minimal over the set of feasible flows. We use T (UE) to denote the

total travel time at the UE solution. Similarly, T (SO) denotes the
total travel time at the SO solution.

1
The demand between any source and target, R(s, t ), can be viewed as an infinitely

divisible set of agents (also known as a non-atomic flow [23]).

Following the fact that, under Assumption 1, Te (fe ) is convex
for any link e , it is easy to show that T (f ) is strictly convex in f .
As a result, unique UE and SO flows exist [1, 4].

Applying tolls
A recent body of work [3, 10, 28, 30, 33] assumed that each link in

the network (e ∈ E) is assigned a toll value, τe . The goal of such
tolls is to affect the route choice of self interested agents. Such

work assumes that drivers are willing to sustain time delays in

return for monetary gain (or avoiding monetary loss). This line of

work requires translating time delays into monetary value using the

agents’ value of time (VOT). VOT represents the agents’ monetary

evaluation of a single unit of time.

Following previous work dealing with non-atomic flow [1, 2, 21,

24] we make the following assumptions and definition.

Assumption 2. The agents’ are homogeneous with regards to their
time evaluation (VOT).

Definition 2 (generalized-cost UE (GUE)). Let τp be the toll
associated with path p (the sum of the tolls on its constituting links
i.e.,

∑
e ∈p τe ). A feasible flow f is a GUE if for every s, t ∈ V 2 and

pa ,pb ∈ Pst with fpa > 0 it holds that lpa (f ) × VOT + τpa ≤

lpb (f ) ×VOT + τpb . In other words, at GUE, no amount of flow can
be rerouted to a path with lower generalized cost (latency multiplied
by VOT plus toll) when the rest of the flow is fixed.

Assumption 3. A solution for a traffic scenario follows the generalized-
costUE principle.

Note that the above definition of GUE requires homogeneous

VOT (Assumption 2). Nonetheless,GUE for heterogeneous VOT can

be formulated as a dynamic user equilibrium (DUE) [17]. Though

we expect that the main contributions of this paper extend naturally

to that case, for clarity of presentation, we leave consideration of

such models for future work.

A traffic scenario is said to be toll-optimized if the set of tolls (τ )
causes the SO andGUE solutions to align. Specifically, a sufficient

(yet not necessary) condition for an optimized system is that τ
equals the set of marginal cost tolls, τMCT

[1, 4].

Definition 3 (Marginal cost toll). In marginal cost tolling
(MCT) each agent (infinitesimally portion of the flow) is charged a toll
equivalent to the damage it inflicts on the system. When the latency
functions are differentiable, the MCT for link e equals fe

∂le
∂fe

That is,
the increase in travel time caused by adding one more unit of flow
to link e (i.e., ∂le

∂fe
) multiplied by all the flow that suffers from this

increase (i.e., fe ). We use τMCT
e to denote the marginal cost toll for

link e .

Assuming that the latency functions are known and differen-

tiable is not practical in many traffic models e.g., the cell transmis-

sion model [5, 6] or microsimulation models [8, 11, 32]. Such an

assumption is certainly not practical for real-life traffic networks.

Consequently, Sharon et al. [27, 28] introduced ∆-tolling, a model-

free method for approximating MCT when the latency function is

unknown. Despite showing reductions in total system travel time

across markedly different traffic models, ∆-tolling, or any mecha-

nism that approximates MCT for that matter, is not guaranteed to
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Figure 1: A symmetrical networkwhere SO andUE naturally
align. Applying inaccurate MCT on one link will result in a
GUE that is worse compared to the SO andUE solutions.

be toll-optimized. This fact poses a major problem since applying

tolls that are different than MCT might result in arbitrarily worse

total system travel time compared to that at the UE.
This paper makes a first attempt to examine the impact of ap-

plying inaccurate MCT. Specifically, it provides conditions under

which the system performance (total system travel time) will be

no worse than that at the UE solution. Providing such conditions

is not trivial since slight errors regarding the marginal cost toll on

specific links can add up and dramatically affect the price affiliated

with many paths in a given road network.

The network presented in Figure 1 illustrates a possible effect

of inaccurate MCT. In this symmetrical network the flow, R(s, t),
would split evenly between the top and bottom links in both the SO
andUE solutions. In such a solution the MCT equals 0.5R(s, t) on
both links. Increasing/decreasing this toll value on one link while

keeping it constant for the other would throw the system out of

balance and result in a new GUE that is worse than both the SO
andUE.

Providing bounds for arbitrary errors in the value of MCT across

a network is challenging, as illustrated in the above example. As a

result, this work focuses on scenarios where the MCT error is of

constant factor across the network.

INACCURATE MARGINAL COST TOLLS
We consider a scenario where the tolls assigned to all links in a

network are off by some factor from the MCT. Such a scenario

might represent a systemic error in evaluating the β parameter in

∆-tolling (see [28] for exact details). Another relevant scenario is

one in which MCT can accurately be computed in units of time

delays. In such cases, a systemic error in the evaluation of the

agents’ VOT would result in a constant factor MCT error.

Definition 4 (MCT-errored scenario). A scenario is said to
be MCT-errored if the toll affiliated with every link, e ∈ E, equals
r · τMCT

e for some error factor r ≥ 0.

Define the GUE flow for an MCT-errored scenario with error r
as f r . As a result, T (f r ) denotes the total system travel time for

the GUE flow. Since f r is a function of r , we use T (r ) instead of

T (f r ) for brevity.

BOUNDING THE SYSTEM’S PERFORMANCE
The following section presents the main contribution of this work

i.e., provable bounds on the system’s performance (total system

travel time) as a function of the error factor r . We begin with several

supporting lemmas.

Lemma 1. A GUE flow, f , for an MCT-errored system minimizes

r
∑
e ∈E

[fe le (fe )] + (1 − r )
∑
e ∈E

[∫ fe

0

le (z)dz

]
(1)

subject to f being feasible (see Definition 1).

Proof. Combining this objective function with the feasibility

constraints results in the following convex program (convexity is

proven in Theorem 1):

Min. r
∑
p∈P

[
fplp (fp )

]
+ (1 − r )

∑
p∈P

[∫ fp

0

lp (z)dz

]
Subject to: ∑

p∈Pst

fp = R(s, t) ∀s, t (2)

fp ≥ 0 ∀p (3)

Notice that the objective function in the above convex program

includes a summation over paths. This is in contrast to Equation 1

which includes a summation over links. This discrepancy is made

possible by the flow constraint which is defined by fe =
∑
p∈Pe fp .

The appropriate Lagrange function for this convex program

(ignoring the non-negativity constraint) is:

L(f , λ) = r
∑
p∈P

[
fp lp (f )

]
+(1−r )

∑
p∈P

[∫ fp

0

lp (z)dz

]
+

∑
s,t∈V 2

λst
(
R(s, t ) −

∑
p∈Pst

fp
)

Incorporating the non-negativity constraint (given in Equasion 3)

results in the following KKT optimality conditions:

fp ≥ 0 ∀p
(4)

∂L

∂ fp
≥ 0 ≡ lp (f ) + rfpl ′p (f ) ≥ λst ∀s, t ∈ V 2, p ∈ Pst

(5)

fp
∂L

∂ fp
= fp

(
lp (f ) + rfpl ′p (f ) − λst

)
= 0 ∀s, t ∈ V 2, p ∈ Pst

(6)

∂L

∂λst
= 0 ∀s, t ∈ V 2

(7)

Notice that Conditions 4 - 7 imply GUE for anMCT-errored scenario.

The condition given in Equation 4 enforces non-negative path flows.

The condition given in Equation 5 enforces that λst is the minimal

generalized cost (latency, lp (f ), plus errored marginal-cost toll,

r fpl
′
p (f )) over all paths leading from s to t . The condition given in

Equation 6 enforces that if a path is used (fp > 0) its generalized

cost must be equal to λst .
□

Next, we turn to prove that any solution that satisfies the GUE

criterion results in the same system travel time. Specifically, we

show that all flow assignments satisfying the above optimality

conditions must be the same solution.
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Theorem 1. A GUE flow for an MCT-errored scenario exists and
is unique.

Proof. In order to prove this lemma it is sufficient to show that

the objective function given in Lemma 1 (Equation 1) is strictly

convex in the flow assignment (f ). The Hessian matrix for Equation

1 (H ∈ R |E |× |E |) is diagonal, where each entry on the diagonal

(representing one link, e ∈ E) equals:

(r + 1)
∂le
∂ fe
+ r fe

∂l2e
∂ f 2e

(8)

For any link, e , the value of equation 8 is strictly positive since:

• r ≥ 0, see Definition 4.

•
∂le
∂fe
> 0, see Assumption 1.

• fe ≥ 0, see Definition 1.

•
∂l 2e
∂f 2e

≥ 0, see Assumption 1.

A diagonal matrix with strictly positive entries along its diagonal

is positive definite. As a result, Equation 1 is strictly convex. □

Given that a unique GUE flow that minimizes equation 1 exists,

we now turn to evaluate its impact on total system travel time for

three key r values: 0, 1, and ∞.

Lemma 2. T (0) = T (UE)

Proof. Setting r = 0 in Equation 1 results in the minimization

of ∑
e ∈E

∫ fe

0

le (z)dz

subject to the feasibility constraint. This minimization problem

results in the UE flow [1]. □

Lemma 3. T (1) = T (SO)

Proof. Setting r = 1 in Equation 1 results in the minimization

of ∑
e ∈E

fe le (fe )

subject to the feasibility constraint. This minimization problem

translates to minimizing total system travel time i.e., an SO flow

[1]. □

Lemma 4. T (∞) = T (f ∞)where f ∞ is a UE solution for a scenario

in which the latency affiliated with every path, p, equals fp
∂lp
∂fp

.

Proof. Dividing Equation 1 by a positive constant (specifically

r ) preserves the minimizing assignment and yields∑
e ∈E

[fe le (fe )] +
1 − r

r

∑
e ∈E

[∫ fe

0

le (z)dz

]
(9)

Since limr→∞(1 − r )/(r ) = −1, Equation 9 converges to∑
e ∈E

[fe le (fe )] −
∑
e ∈E

[∫ fe

0

le (z)dz

]
(10)

Figure 2: A network where setting r = ∞ results in an arbi-
trary worse system performance compared to both the UE
and SO solutions.

The KKT optimality conditions for minimizing Equation 10 under

the feasibility constraints include:

fp ≥ 0 ∀p (11)

fpl
′
p (fp ) ≥ λst ∀st , p ∈ Pst (12)

fp (fpl
′
p (fp ) − λst ) = 0 ∀st , p ∈ Pst (13)

which implyUE (see “The flow model” section for definition) if the

latency function for any path p is replaced by fp
∂lp
∂fp

. □

Lemma 4 implies that at r = ∞ the system performance (total

system travel time) can be arbitrarily worse than T (SO) or T (UE).
As an example, consider the network depicted in Figure 2. The

latency on the bottom link equals the fraction of flow that is as-

signed to it. If, for instance, 25% of the flow is assigned to the

bottom link then the travel time on that link equals 0.25. The la-

tency on the top link equals a constant,C , regardless of the amount

of flow that is assigned to it. For C ≥ 2 the SO and UE align and

T (SO) = T (UE) = 1 · R(s, t). Since the latency on the top link is

not a function of the flow,MCT = x
∂lp
∂x = 0 for the top link while

MCT = x
∂lp
∂x ≥ 0 for the bottom link. As a result, at r = ∞, 100%

of the flow from s to t would travel the top link while 0% would

travel the bottom link. Such a flow would result in total system

travel time = C · R(s, t). It is easy to see that as C increases so does

the difference between T (∞) and T (SO) or T (UE), potentially to

infinity.

Given that no bound on the system’s performance can be given

for r = ∞ we turn to examine bounds on other values of r . We start

by examining values of r that fall between zero and one.

Lemma 5. Any two error values 0 ≤ r1 < r2 < 1 satisfy T (r1) ≥
T (r2).

Proof. For simplicity of presentation we use U (r ) to denote∑
e ∈E

[∫ f re

0

le (z)dz

]
Any GUE flow f r must minimize Equation 1 (Lemma 1). That is,

subject to being feasible, f r minimizes the expression rT (r ) + (1 −
r )U (r ). Minimizing Equation 1 under r1 requires that

r1T (r2) + (1 − r1)U (r2) ≥ r1T (r1) + (1 − r1)U (r1)

and as a result

r1(T (r2) −T (r1)) ≥ (1 − r1)(U (r1) −U (r2)) (14)
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Similarly, minimizing Equation 1 under r2 requires that

r2(T (r2) −T (r1)) ≤ (1 − r2)(U (r1) −U (r2)) (15)

Assume, in contradiction to the lemma, thatT (r2)−T (r1) > 0. Since

1− r2 > 0 and r2 > 0, Equation 15 would requireU (r1) −U (r2) > 0.

Since all the components of Equations 14 and 15 are strictly positive,

we can rewrite them as:

r1
1 − r1

≥
U (r1) −U (r2)

T (r2) −T (r1)
(16)

r2
1 − r2

≤
U (r1) −U (r2)

T (r2) −T (r1)
(17)

From Equations 16 and 17 we obtain

r1
1 − r1

≥
r2

1 − r2
(18)

Since the function f (r ) = r/(1−r ) is continuous and strictly increas-
ing for r < 1 then Equation 18 must satisfy r1 ≥ r2 in contradiction

to the lemma’s premise. □

Next we turn to examine the behavior of error values that are

greater than one.

Lemma 6. Any two error values 1 < r1 < r2 satisfy T (r1) ≤ T (r2).

Proof. Assume, in contradiction to the lemma, that T (r2) −
T (r1) < 0. Since 1 − r1 < 0 and r1 > 1 > 0, Equation 14 requires

U (r1) − U (r2) > 0. Even though the signs of (T (r2) − T (r1)) and
(1 − r1) and (1 − r2) are in contrast to the case presented in Lemma

5, rearranging Equations 14 and 15 still result in Equations 16 and

17 which leads to the inequality in Equation 18. Since the function

f (r ) = r/(1− r ) is continuous and strictly increasing for r > 1 then

Equation 18 must satisfy r1 ≥ r2 in contradiction to the lemma’s

premise. □

Following Lemma 5 and 6 we can now provide bounds for an

MCT-errored system.

Theorem 2. If 0 ≤ r ≤ 1 then T (r ) ≤ T (UE).

Proof. T (0) = T (UE) (Lemma 2) and T (r ) is non increasing in

the interval [0, 1) (Lemma 5). Also T (1) = T (SO) ≤ T (UE) (Lemma

3). □

Theorem 3. If r ≥ 1 thenT (r ) ≤ T (f ∞)when f ∞ is a UE solution
for a scenario where the latency on every path, p, equals fpl ′p (fp ).

Proof. T (∞) = T (f ∞) when f ∞ is a UE solution for a scenario

where the latency for every path, p, equals fpl
′
p (fp ) (Lemma 4).T (r )

is non decreasing for r > 1 (Lemma 6). Also T (1) = T (SO) ≤ T (∞)

(Lemma 3). □

Theorem 2 implies that when underestimating MCT by a con-

stant factor, 0 ≥ r < 1, the systems performance cannot be worse

that the one obtain by the UE solution, T (UE).
Theorem 3 implies that when overestimating MCT by a constant

factor, r > 1, the systems performance cannot be worse then T (∞).

However sinceT (∞) can be arbitrary worse thanT (UE) andT (SO),
this bound is not as useful as the one provided for the previous

case, 0 < r < 1.

EMPIRICAL STUDY
In order to validate our theoretical findings, we simulated different

traffic scenarios while varying the MCT error factor (r ). The total
system performance (total system travel time) was measured for

each setting and the trends were compared to the above theoretical

claims.

Traffic scenario
Each simulated traffic scenario is defined by two attributes:

(1) The road network,G(V ,E), specifying the set of vertices and
links where each link is affiliated with a length, capacity, and

speed limit, these link attributes are used to set the link’s

latency function. Following standard practice, networks are

partitioned into traffic analysis zones (TAZs) and each zone

contains a vertex belonging toV called the centroid. All traf-

fic originating and terminating within the zone is assumed

to enter and leave the network at the centroid.

(2) A trip table specifying the traffic demand between pairs of

centroids. The demand, R(s, t), between vertices, s, t ∈ V 2
,

other than centroids, is set to zero.

Following Sharon et al. ([2018]) the following benchmark sce-

narios were chosen: Sioux Falls, Eastern Massachusetts, Anaheim,

Chicago Sketch, Philadelphia, and Chicago Regional. All traffic sce-

narios are available at:

https://github.com/bstabler/TransportationNetworks. Figure 3 de-

picts three representative network topologies (Sioux Falls, Eastern

Massachusetts, Anaheim).

Table 1 presents the scenario specifications i.e., number of ver-

tices, links, and zones for the traffic network that is affiliated with

each scenario. Total demand, summed over all {s, t } pairs, as speci-
fied by the affiliated trip table are also provided (as “Total Demand").

The same table also presents total system travel times for different

error values, these results are discussed later.

The Traffic Model
The GUE solutions for the above scenarios were computed using

Algorithm B [7]. For all scenarios, the model assumes that travel

times follow the Bureau of Public Roads (BPR) function [19] with the
commonly used parameters α = 0.15 and β = 4. Since computing

the GUE solution requires solving a convex program (see 1), we

only solve it to a limited precision.

To measure convergence, given an assignment of agents to paths,

we define the average excess cost (AEC) as the average difference

between the travel times on paths taken by the agents and their

shortest alternative path. The algorithm is terminated when the

AEC is less than 1 × 10
−6

minutes.

Results
In addition to the scenario specifications, Table 1 also presents the

system’s performance (total system travel time) for five different

error values (r = {0, 0.5, 1, 2,∞}). The SO solution (r = 1) provides

the best performance (minimal total system travel time), as expected.

The performance for r = ∞ is slightly better than that at the UE
solution (r = 0) in some cases, e.g., Sioux Falls and Philadelphia, but
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(a) Sioux Falls (b) Eastern Massachusetts (c) Anaheim (d) Austin (e) San Antonio

Figure 3: Traffic networks used in the experiments.

Scenario Vertices Links Zones Total Demand T (UE) T (0.5) T (SO ) T (2) T (∞)

Sioux Falls 24 76 24 360,600 7,480,223 7,205,048 7,194,256 7,198,091 7,222,857

Eastern MA 74 258 74 65,576 28,181 27,411 27,324 27,392 32,460

Anaheim 416 914 38 104,694 1,419,913 1,397,216 1,395,015 1,398,631 1,549,075

Chicago S 933 2,950 387 1,260,907 18,377,331 17,991,235 17,953,268 17,994,192 19,630,440

Chicago R 12,982 39,018 1790 1,360,427 33,656,969 32,078,668 31,942,957 32,096,038 38,190,675

Philadelphia 13,389 40,003 1525 18,503,872 335,647,096 325,211,099 324,268,465 325,176,216 335,296,306

Table 1: The system performance (total system travel time) given as “T (x)" for different scenarios along with network specifi-
cations, for each scenario: number of vertices, links, zones, and total demand (

∑
st R(s, t)).

Figure 4: Normalized total system travel time as a function
of the error factor (r) for six benchmark traffic scenarios.

might be significantly worse in others, e.g., Eastern Massachusetts

where T (∞) was outperformed by T (UE) by 15%.

Results for applying half and double the true MCT are also pro-

vided (T (0.5) and T (2) respectively). Results for these values are
mixed where in some casesT (0.5) performs slightly better thanT (2)
and vice versa in others. Nonetheless, r = 0.5 has a clear advantage

over r = 2 since, unlike T (2), the value of T (0.5) is bounded by

T (UE) for any scenario (Theorem 2).

Figure 4 presents normalized values for total system travel time

as a function of the error factor r . The total system travel time

values (y-axis) for each curve are normalized according to T (SO)

e.g., a total system travel time value of 2 correlates to doubleT (SO)
for the relevant curve (scenario). Consequently, T (1) = T (SO) = 1

in all the curves. The data points were computed for the range

r = [0, 20] with a step size of 0.1. Each of the curves starts with a

dot representing T (UE). Additionally, dots on the right border of

the plot representT (∞). Such dots are presented only for the Sioux

Falls and Philadelphia scenarios as T (∞) is out of the presented

total system travel time range for the rest (exact values are available

in Table 1). As predicted by Lemmas 5 and 6 the curves are non-

increasing in the range [0, 1] and non-decreasing in the range [1,∞].

Dynamic traffic assignment
The traffic model that is assumed in this paper, though common

in the traffic literature, does not apply to many real-life traffic sce-

narios. In order to broaden the impact of this research, we turn to

investigate the performance of an MCT-errored scenario in a more

realistic traffic flow model. Specifically, we test our findings in a dy-
namic traffic assignment setting. A dynamic traffic assignment

model combines a traffic model with time-varying network states

with a route choice principle (drivers choose routes to minimize

some combination of their travel time and toll cost).

Dynamic traffic assignment iterates between finding shortest

paths, assigning vehicles, and evaluating travel times through sim-

ulation, to find a route assignment near dynamic user equilib-

rium [14]. DTA models can be used to perform many simulations

of city network traffic in a reasonable time. DTA models commonly

use the kinematic wave theory of traffic flow, which models traf-

fic as a compressible fluid [15, 22]. The kinematic wave theory

models several important aspects of traffic behavior including the

formation and dissipation of congestion waves over time due to

bottlenecks. The kinematic wave model involves a system of partial
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Figure 5: Normalized total system travel time (with 95% con-
fidence intervals) as a function of β in ∆-tolling (represent-
ing the error factor) for three benchmark traffic scenarios.

differential equations which are solved numerically given initial

and boundary conditions. One common solution method is the cell

transmissionmodel (CTM) [5, 6], which is a Godunov scheme [9] for

the kinematic wave theory. The CTM can be used with a variety of

intersection models [29], including traffic signals and autonomous

reservation schemes [13]. Using such intersection models, CTM,

unlike the static model defined by Assumptions 1, 2, and 3, takes

into account inter-link effects, making CTM more realistic on the

one hand but intractable for large networks.

In order to further mimic a realistic setting, drivers were assigned

heterogeneous evaluation of time. The time evaluation per driver

was randomly drawn from a Dagum distribution with parameters

â = 22020.6, ˆb = 2.7926, and ĉ = 0.2977, reflecting the distribution

of personal income in the United States [16]. These settings were

chosen to be identical to those presented in previous work [27, 28].

Three traffic scenarios (depicted in Figure 3) were evaluated

using the CTM framework.

• Sioux Falls - [12] — this scenario is widely used in the trans-

portation research literature [13], and consists of 76 directed

links, 24 nodes (intersections) and 28,835 trips spanning 3

hours.

• Downtown Austin - [14] — this network consists of 1,247

directed links, 546 nodes and 62,836 trips spanning 2 hours

during the morning peak.

• Uptown San Antonio - this network consists of 1,259 di-

rected links, 742 nodes and 223,479 trips spanning 3 hours

during the morning peak.

Since there is no closed form equation for computing MCT in

DTA for the general case, the ∆-tolling mechanism was used to

approximate MCT. The β parameter in ∆-tolling acts as a propor-

tional parameter for ∆-tolling (for more details see [28]) and, thus,

was used to represent different error values (r ).2 Figure 5 is similar

in structure to Figure 4, representing total system travel time as a

2
In the reported experiments the R parameter was set to 10

−4
for ∆-tolling following

the best performing value reported by Sharon et al. [2017b].

function of the MCT error (represented by different β values) but

for DTA scenarios. Since DTA is not deterministic with regard to

the VOT assigned to each driver, an average of 20 runs is presented

per data-point with 95% confident intervals.

DTA does not follow the assumptions made in the above theoret-

ical analysis (Assumptions 1 and 3). As a result, Lemmas 5 and 6 and

Theorems 2 and 3 do not hold. Nonetheless, the general trend where

the system performance improves until some optimal point and

then deteriorates can still be observed suggesting that the general

conclusions drawn in this work are relevant to real-world traffic.

DISCUSSION
Lemmas 5 and 6 and Theorems 2 and 3 lead to the following theo-

retical conclusions:

• Underestimating MCT by a constant factor across a traffic

network would result in a system performance that is not

worse than the no-toll user equilibrium.

• When calibrating a parameter that is a multiplier of the

true MCT, a value that is locally optimal is guaranteed to be

globally optimal.

The presented empirical results suggest that these conclusions ex-

tend to realistic trafficmodels. The implications of these conclusions

might be substantial when installing a new tolling scheme with a

tunable parameter, θ where the value of θ correlates to a fixed error

in MCT. As stated in Section “INACCURATE MARGINAL COST

TOLL”, this can occur when calibrating the expected drivers’ value

of time or the β parameter in ∆-tolling [28] as done in Enhanced
∆-tolling [18]. The calibration process in such cases amounts to

detecting a local minimum (which is guaranteed to be the global

minimum).

SUMMARY AND FUTUREWORK
This paper considers a traffic scenario in which marginal-cost tolls

(MCT) with a fixed factor error is imposed on all drivers. The sys-

tem performance is analyzed with regards to the error rate and

performance bounds are provided as a function of the error value.

Three main claims are proven:

(1) If the error factor is lower than 1 (MCT is underestimated)

the system will not perform worse than if no tolls were

applied.

(2) As the error factor increases from 0 to 1 the system’s perfor-

mance will not deteriorate.

(3) As the error factor increases from 1 to infinity the system’s

performance will not improve.

These claims can allow the tuning of MCT-based tolling schemes

while insuring quality of service along the tuning process. There

are many other conceivable errors besides a multiplicative, system-

wide factor on the true MCT. Consequently, future work ought to

examine scenarios with other assumptions on the toll error, such

as when the assessed toll is within some bounded interval around

the MCT.
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