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ABSTRACT
We study the revenue maximization problem with an imprecisely
estimated distribution of a single buyer or several independent and
identically distributed buyers given that this estimation is not far
away from the true distribution. We use the earth mover’s distance
to capture the estimation error between those two distributions in
terms of both values and their probabilities, i.e., the error in value
space given a quantile, and the error in quantile space given a value.
We give explicit characterization of the optimal mechanisms for
the single buyer setting. For the multi-buyer case, we provide an
algorithm that finds an approximately optimal mechanism (FPTAS)
among the family of second price mechanisms with a fixed reserve.
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1 INTRODUCTION
One of the most important topics in mechanism design is the rev-
enue maximization problem. Optimal mechanisms have been well
studied in both single-item setting, following the seminar work of
Myerson [13], and multi-item setting, see Cai et al. [3, 4]. There
is also a huge literature on approximately optimal simple mech-
anisms, see Roughgarden and Talgam-Cohen [15] for a detailed
discussion. All those papers assume that the seller knows the exact
distribution of the buyers. However, according to Harsanyi [11],
this assumption is hard to realize in practice. To overcome this
problem, lots of studies have focused on revenue maximization
with weaker assumptions. In Cole and Roughgarden [8], they as-
sume that the seller only has access to the samples of the buyers’
distributions, and the goal is to maximize the revenue using the
distribution reconstructed from the samples. The model in Chen
et al. [7] assumes that the seller has oracle access to the value and
quantile information about the true distribution. Similar to the goal
of sample complexity, the goal here is to reconstruct the distribu-
tion with limited queries. The prior-independent mechanism design
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Commission.
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model considered in Devanur et al. [9] adopts an extreme assump-
tion that the seller has no information about the distribution. They
assume that the buyers’ valuations are independent and identically
distributed. All those papers focus on the nature of the imprecision
on the prior distribution, which will also be the main focus of our
paper.

1.1 Our Problem and Results
The seller is given an imprecisely estimated distribution of a single
buyer or several i.i.d buyers, and the assumption is that it is within
ϵ earth mover’s distance to the true distribution. The seller designs
a mechanism based on the estimated distribution, while its per-
formance is evaluated with respect to the worst case distribution
within ϵ earth mover’s distance to the estimated distribution. We
want to design the optimal mechanism in this worst case perfor-
mance metric. This will give a lower bound for any true distribution
in that range and we call such mechanism the most robust mecha-
nism.

In section 3, we solve themax-min problemwhen there is a single
buyer. The idea is to write this problem using a linear program,
and transform it into its dual form. By analyzing the properties
of the dual, we can successfully characterize the optimal robust
mechanism. Here, we state the results for continuous distributions
informally.

Informal Theorem 1. When there is a single buyer, the allocation
x for the optimal mechanism satisfies that ∃a,b:

x(v) =


0 ∀v < a;
(ln v

a )/(ln
b
a ) ∀a ≤ v ≤ b;

1 ∀b < v .
The formal result are stated in Theorem 3.1 for discrete distri-

butions. For continuous distribution, we can discretize the support
and come up with such mechanism that is arbitrarily close to the
optimal. As we show in the above theorem, the optimal mechanism
is a randomized mechanism. Moreover, using this characterization,
we can bound the gap between the optimal randomized mechanism
and the optimal deterministic mechanism for the max-min goal,
which is shown in Theorem 3.4 and 3.5. In section 4, we first charac-
terize the worst case distribution for the second price mechanism.

Informal Theorem 2. When there are multiple buyers, the worst
case distribution for the second price mechanism satisfies that, there
exists k, l such that k < l , the density between value k and l is 0,
and the distribution outside [k, l] remains the same comparing to the
distribution known by the seller.

This result is formally stated in Theorem 4.1. Using this char-
acterization as a bridge, we are able to further characterize the
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distribution with minimum revenue for second price mechanism
with a fixed reserve. Moreover, in Theorem 4.2, for Lipschitz con-
tinuous distributions with bounded support, we design a FPTAS
algorithm for finding the optimal robust reserve for the second price
auction when there are multiple buyers. Ostrovsky and Schwarz
[14] show that by decreasing the theoretical optimal reserve price
by a constant factor, the revenue increases in practice. They do not
provide theoretical intuition for their result. Our result indicates
that one possible reason is that the underlying true distribution
is not identical to the distribution known by the seller, and the
original theoretical optimal reserve price is not robust with respect
to the imprecision of the distribution.

1.2 Previous Work on Robust Mechanism
Design

There are a number of works studying the robustness of mecha-
nisms at different levels of prior imprecision [1, 2, 5? , 6]. To quantify
the imprecision, some may define a distance metric for distribu-
tions, and then an imprecise distribution can be characterized as
any distribution within a distance of ϵ from the true one.With those
imprecise distributions, we can design a max-min game between
the seller and the adversarial nature: the seller proposes a mecha-
nism, and then the adversary chooses a distribution with minimum
expected revenue generated by that mechanism. The performance
of the optimal mechanism is studied under such circumstance. For
one dimensional density functions f , f ′ and their corresponding
cumulative distributions F , F ′, we present the informal definition
of some metrics used in previous works:

• Total Variation distance (TV distance): supS ⊂[0,+∞) | f (S) −

f ′(S)|
• Kolmogorov distance: supx ≥0 |F (x) − F ′(x)|
• Prokhorov distance: inf{ϵ |∀S ⊂ [0,∞), f (S) ≤ f ′(Sϵ ) + ϵ},
where Sϵ = {x ∈ [0,+∞)|miny∈S |x − y | ≤ ϵ}.

• Earth Mover’s distance (First order Wasserstein distance):
infπ (x,y)∈Π

∫ +∞
0

∫ +∞
0 π (x ,y)|x −y |dxdy where Π is the set

of all the two dimensional distribution whose marginals are
respectively f and f ′.

With these distance metrics, some researches have been conducted
on robust mechanisms design. Cai and Daskalakis [2] studies the
revenue guarantee of simple and robust mechanism in multi-item,

multi-buyer settings. By sampling from the distribution O( loд(
1
δ )

ϵ 2 )

times, they are able to learn the marginal distribution for each item
that is within ϵ TV-distance, with probability at least 1 − δ . In such
setting, they also study the upper bound of approximation ratio
for simple mechanisms, such as rationed sequential posted price
mechanisms or anonymous sequential posted price mechanisms
with entry fees. The work of Bergemann and Schlag [1] focuses
on the Prokhorov distance. When there is a single buyer, a single
item and a potential ϵ Prokhorov distance between the true prior
and the known distribution, the paper examines the properties
and the equilibrium of the maxmin game via an implicit function,
and they characterize the seller’s optimal mechanism as posting a
deterministic price.

Most of the distance metrics are chosen for the convenience of
computation, while disadvantages of such choices do exist.

• Sensitivity to Distribution: Some distance measures only
focus on the errors in probability space, not the errors in
value space. For instance, consider two distributions which
are 1 and 1 − ϵ respectively with probability 1, where ϵ > 0
is a small constant. Those two distributions should be con-
sidered to be close to each other, with a small error in value
space. However, the TV distance and Kolmogorov distance
between these two distributions both achieve their maxi-
mum 1, indicating that a tiny deviation of distributions can
bring about a giant variation distances.

• Sensitivity to Structure: Some previous results for certain
metrics benefit from the property that there is a distribu-
tion which is statistically dominated by all the distributions
within certain distance. For Prokhorov distance and Kol-
mogorov distance, such distributions is to move the the prob-
ability of measure ϵ from the highest value to the lowest. For
single item settings, the max-min mechanism becomes the
optimal mechanism on the dominated distribution due to rev-
enue monotonicity. This property does not hold in general,
such as the robustness for the earth mover’s distance, and
hence their results cannot be generalized for more general
settings.

Therefore, proper distance measures should take the errors in value
space into consideration, i.e. either there is a small error in esti-
mating the value or the probability of a large error in estimating
the value is small. This property is well characterized by the earth
mover’s distance. Moreover, there does not exist a single distri-
bution that is stochastically dominated by all other distributions
within ϵ earth mover’s distance to the known distribution. Thus,
we cannot exploit the revenue monotonicity of the single item auc-
tion. As a result, our mechanism is much more complex than the
previous results, in the sense that our mechanism is randomized.

2 PRELIMINARIES
In this paper, we consider the problem that the seller tries to sell a
single indivisible item to the buyers whose values are independently
and identically distributed. Let M = {1, . . . ,m} denote the set of
buyers. For the sake of simplicity, we start with discrete distribu-
tions, and we will show how to generalize our results to continuous
distributions. For any buyer j ∈ M , his value vj takes from a dis-
crete value set V = {v0, . . . ,vn }, where v0 < v1 < · · · < vn . We
assume that the seller knows the set V and a discrete distribution
f = (fi )i ∈{0, ...,n } , where fi is the probability of value vi . When
we consider the continuous distribution, we will use the notation
and let f (v) denote the probability density at value v . We denote
F as the corresponding cumulative probability function. Note that
this is not the true underlying distribution for the buyers.

We assume that the error of the distribution is small. We charac-
terize this error using earth mover’s distance. To change from f to
f ′, we need to move a possibility measure at least

��� ∑j<i (fj − f ′j )
���

from vi to vi−1 or from vi−1 to vi . Therefore, the earth mover’s
distance between discrete distributions f and f ′ is equivalently
defined as

EMD(f , f ′) =
∑
i ∈[n]

(vi −vi−1)
���∑
j<i

(fj − f ′j )
��� (1)
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We assume that the true distribution for the buyers is within ϵ earth
mover’s distance of the known distribution f . That is, the seller
knows f and knows that the true distribution f ′ ∈ EMD(f , ϵ),
where

EMD(f , ϵ) = { f ′ |EMD(f , f ′) ≤ ϵ} (2)
Since both probability density function f and cumulative probabil-
ity function F uniquely decides a distribution, we also use notations
EMD(F , F ′), EMD(F , ϵ) for the same meaning.

In this paper, we use M = (x ,p) to denote a mechanism, where
x = (x

j
i )i ∈{0, ...,n }, j ∈M is the allocation rule andp = (p

j
i )i ∈{0, ...,n }, j ∈M

is the payment rule. Here x ji is the probability that buyer j gets
the item when he bids vi , and p

j
i is the price that buyer j pays

when he bids vi . When there is only one buyer, we will omit the
superscription for the allocation and the price without ambiguity.

The goal of the seller is to find a individual rational (IR) incentive
compatible (IC) mechanism M to maximize the minimum revenue
among all those possible distributions. That is, denoting Rev(M, f )
as the revenue of a IR-IC mechanism M with buyer distribution
f , and denoting M as the set of mechanisms we consider for the
setting, the goal of the seller is to find a mechanism M∗ such that

M∗ = arg max
M∈M

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) (3)

In the rest of this paper, we will show how to achieve this goal
when there is only one buyer and the mechanism setM is the set
of all IR-IC mechanisms, or when there are multiple buyers and the
mechanism setM is the set of second price mechanisms with fixed
reserves. Moreover, for the single buyer case, we start with the
assumption that the distribution f known by the seller is regular,
i.e. the virtual value ϕi = vi − 1−Fi

fi
is non-decreasing [13]. Note

that this does not imply that the true distribution is regular. In
fact, this assumption can be removed and we formally discuss it in
section 3.1.

3 SINGLE BUYER CASE
When there is a single buyer, the form of the mechanism is simply
posting a (randomized) menu to the buyer, and let the buyer choose
his favorite entry. In this case, we prove that the mechanism satis-
fying the max-min goal has a very simple form. Formally, we have
the following theorem.

Theorem 3.1. When there is a single buyer and M is the set
of all IR-IC mechanisms, for any discrete distribution f with sup-
port {v0,v1, . . . ,vn }, there exists a polynomial time algorithm that
finds mechanismM∗ = argmaxM∈Mminf ′∈EMD(f ,ϵ ) Rev(M, f

′).
Moreover, mechanism M∗ = (x ,p) takes one of the following forms.

(1) For any i ∈ {0, . . . ,n},xi = 1,pi = v0.
(2) There exist 0 ≤ a ≤ b ≤ n such that λ = 1/(

∑b
j=a

vj−vj−1
vj ),

and

xi =


0 0 ≤ i < a∑i
j=a

λ(vj−vj−1)
vj a ≤ i ≤ b

1 b < i ≤ n.

In order to solve problem (3), first we transform the problem into
a simpler form. According to [10], the revenue of the seller is mono-
tone with respect to statistical dominance. Therefore, we only need

to consider the distribution where the probability mass is moved
from a high value to low value. Let the probability transferred from
value vi to vi−1 be ti . Then the new distribution f ′ satisfies that
f ′i = fi + ti+1 − ti and the earth mover distance between f and f ′

can be written as

EMD(f , f ′) =
n∑
i=1

ti (vi −vi−1).

Let the allocation and payment rule of a mechanismM be (x ,p). We
can write (3) as the following explicit mathematical programming:

max
x,p

min
t

n∑
i=0

pi fi −
n∑
i=1

ti (pi − pi−1) (4)

vixi − pi ≥ vix j − pj , ∀0 ≤ i, j ≤ n

vixi − pi ≥ 0, ∀0 ≤ i ≤ n

pi ≥ 0, 0 ≤ xi ≤ 1, ∀0 ≤ i ≤ n

ti + fi−1 ≥ ti−1, ∀2 ≤ i ≤ n

ti ≥ 0, ∀1 ≤ i ≤ n

fn ≥ tn ,
n∑
i=1

ti (vi −vi−1) ≤ ϵ .

Fix a feasible pair of variables x ,p and focus on the minimization
part of the optimization problem (4). Since the term

∑n
i=1 pi fi is a

constant with respect to t , the minimization problem can be written
equivalently into the following form.

min
t

−

n∑
i=1

ti (pi − pi−1) (5)

ti+1 + fi ≥ ti , ∀1 ≤ i ≤ n − 1
ti ≥ 0, ∀1 ≤ i ≤ n

fn ≥ tn ,
n∑
i=1

ti (vi −vi−1) ≤ ϵ .

We can write its dual form as follows:

max
β,λ

−λϵ −
n∑
i=1

βi fi (6)

βi − βi−1 + λ(vi −vi−1) ≥ pi − pi−1, ∀2 ≤ i ≤ n

β1 + λ(vi −vi−1) ≥ p1 − p0,

λ ≥ 0, βi ≥ 0, ∀1 ≤ i ≤ n

We define z = {zi }i ∈{0, ...,n } such that z0 = p0 and zi = pi −
βi ,∀1 ≤ i ≤ n. Also, we say a vector v dominates u if and only
if for any i , vi ≥ ui . According to Myerson’s lemma, in a DSIC
mechanism, the allocation is non-decreasing. We denote P as the
set of all possible payment rules of the IR-IC mechanisms, and we
denote Z as the set of all possible z’s that are dominated by some
p ∈ P . Obviously, P ⊂ Z for every vector dominates itself. By strong
duality, the optimal of the primal and the dual are equal. Hence, by
substituting the primal problem (5) with the dual problem (6), we
can rewrite the original optimization problem (4) equivalently as
follows.

max
λ,z(λ,β,p)

n∑
i=1

zi fi − λϵ (7)
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zi − zi−1 ≤ λ(vi −vi−1), ∀1 ≤ i ≤ n

z ∈ Z , λ ≥ 0.

To solve problem (7), we are going to reduce it into another
problem:

max
λ,z

n∑
i=1

zi fi − λϵ (8)

zi − zi−1 ≤ λ(vi −vi−1), ∀1 ≤ i ≤ n

z ∈ P , λ ≥ 0.

Intuitively, the solution to (8) is the payment rule of an IR-IC
mechanism of which expected revenue minus λϵ achieves the max-
imum and adjacent payments are bounded by a multiple of λ. To
show that the the solutions to problem (7) and (8) are the same, we
need the following lemma:

Lemma 3.2. If (λ, z) is the solution of the optimization problem (7),
z ∈ P .

In order to prove the above lemma, we make the following ob-
servations.

Property 1. If (λ, z) is the solution to the optimization problem
(7), z is non-decreasing.

Proof. Suppose (λ∗, z) optimizes problem (7) and there exist
i such that zi > zi+1. By constraint of problem (7), there exists
p′ ∈ P and p′ dominate z. We construct another vector z∗ such
that z∗j = zj ,∀j , i + 1, and z∗i+1 = zi . Since p′ is non-decreasing,
z∗i+1 = z∗i = zi ≤ p′i ≤ p′i+1 and ∀j , i + 1, z∗j = zj ≤ p′j . Hence p

′

dominates z∗ as well. Moreover,

z∗i+1 − z∗i = 0 < λ∗(vi+1 −vi ),
z∗i+2 − z∗i+1 = zi+2 − zi < zi+2 − zi+1 ≤ λ∗(vi+2 −vi+1),

z∗j+1 − z∗j = zj+1 − zj ≤ λ∗(vj+1 −vj ),∀j < {i, i + 1}.
Thus, (λ∗, z∗) satisfies all the constraints and z∗ · f > z · f . Hence
we get the contradiction and z is non-decreasing. □

Property 2. Let z be a non-decreasing sequence. If there exists
p ∈ P such that p dominates z, we have z ∈ P .

Proof. For a non-decreasing sequence z, denoting x as the al-
location for the payment p that dominates z, we prove z ∈ P by
finding a feasible allocation x ′ for z. For any allocation and payment
pair (x ,p), it is truthful if and only if

pi − pj

vi
≤ xi − x j ≤

pi − pj

vj
,∀i > j . (9)

We set x ′0 = x0. For any i ∈ [n], we set

x ′i = x ′i−1 +
zi − zi−1

vi
.

It is easy to check that x ′ is monotone and it satisfies the truthful
condition in inequality 9. We only need to check that xn ≤ 1 and it
is individual rational. First, we observe

x ′n = x ′0 +
∑

1≤i≤n

zi − zi−1
vi

≤ x0 +
∑

1≤i≤n

pi − pi−1
vi

≤ xn ≤ 1.

The first inequality holds because p dominates z, and the maximum
is achieved only when zi = pi for any i ≥ 1. By construction that
x ′0 = x0 and z0 = p0, x ′0v0 −z0 ≥ 0. Using induction, for any i ∈ [n],
we have

x ′ivi − zi = (x ′i−1 +
zi − zi−1

vi
)vi − zi

= x ′i−1vi − zi−1

≥ x ′i−1vi−1 − zi−1.

Thus the allocation x ′ and payment z satisfies individual rationality,
and z ∈ P . □

Combining Property 1 and 2, Lemma 3.2 holds. Nowwe are ready
to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, the solution (λ∗, z∗) to
problem (8) is the solution to problem (7). Now,we can view z∗ as the
payment rule of a mechanism and let p∗i = z∗i , β

∗
i = 0,∀1 ≤ i ≤ n.

Thus, if a mechanism has the same payment rule as z∗, it is an
optimal mechanism to problem (7). So all we have to do now is find
a mechanism that optimizes problem (8), which is the solution to
problem (7) as well.

Let z ∈ P and y be the corresponding allocation rule such that
for any 1 ≤ i ≤ n, yi − yi−1 = zi−zi−1

vi , and y0 = z0
v0
. By Myerson’s

Lemma for discrete distributions, we have
n∑
i=1

zi fi − λϵ =
n∑
i=1

yiϕi fi − λϵ . (10)

Let k be the index that ϕk ≥ 0 and ∀i < k, ϕi < 0. Fixing
yk and λ, by the constraint of problem (8), we have yj − yj−1 =
zj−zj−1

vj ≤
λ(vj−vj−1)

vj . Therefore, for any i > k,yi ≤ min{yk +∑i
j=k+1

λ(vj−vj−1)
vj , 1}. In order to maximize the objective, all the

above inequalities should be equalities. Similarly, for any i < k,yi ≥

max{yk −
∑k
j=i+1

λ(vj−vj−1)
vj , 0}, and the equalities should hold to

maximize the objective. When λ = 0, we can easily get that for
any 0 ≤ i ≤ n, yi = yk , which is optimized at yk = 1. This
characterization is equivalent to the case 1 in Theorem 3.1.

When λ > 0, there exist 0 ≤ a ≤ b ≤ n, such that

yi =


0 0 ≤ i < a

yk −
∑k
j=i+1

λ(vj−vj−1)
vj a ≤ i < k

yk +
∑i
j=k+1

λ(vj−vj−1)
vj k ≤ i ≤ b

1 b < i ≤ n

Fixing a and b, the allocation y can be uniquely determined by
the value ya . Substituting equation 10 and the characterization of
variable y back into problem (8), we can get the following optimiza-
tion problem with ya as a variable.

max
λ,ya

ya faϕa+
b∑

i=a+1
(ya+

i∑
j=a+1

λ(vj −vj−1)

vj
)fiϕi +

n∑
i=b+1

fiϕi −λϵ

(11)
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ya +
b∑

j=a+1

λ(vj −vj−1)

vj
≤ 1,

ya +
b+1∑
j=a+1

λ(vj −vj−1)

vj
≥ 1, if b < n

ya ≤
λ(va −va−1)

va
, if a > 0

ya ≥ 0, λ > 0.

Since the objective and constraints are linear in λ and ya , the
optimum is reached at the boundary of the domain. Moreover,
when λ > 0, for the boundary case, ya = 0 or ya = λ(va−va−1)

va .
In both cases, we can get that there exist 0 ≤ a′ ≤ b ′ ≤ n such
that λ = 1/(

∑b′
i=a′

vi−vi−1
vi ), and the allocationy takes the following

form. The payment z can be computed accordingly.

yi =


0 0 ≤ i < a′∑j
i=a′

λ(vj−vj−1)
vj a′ ≤ i ≤ b ′

1 b ′ < i ≤ n.

zi =


0 0 ≤ i < a′

λ(vi −va′) a′ ≤ i ≤ b ′

λ(vb′ −va′) b ′ < i ≤ n.

This characterization is equivalent to the case 2 in Theorem 3.1.
By brute force searching all possible pair of a,b and select the one
with highest expected revenue, we find the desired mechanism that
maximizes the objective value of problem (7) and (8). Therefore, we
have for any 0 ≤ i ≤ n, xi = yi ,pi = zi and the mechanism that
optimizes problem (7) is also an optimal solution for problem (3).
Thus finishes the proof of Theorem 3.1. □

3.1 Irregular Distribution
In this section, we show the result for the single buyer case even
when the prior distribution known by the seller is irregular. First
we state the theorem.

Theorem 3.3. When there is a single buyer and M is the set of
all IR-IC mechanisms, for any continuous distribution f , mechanism
M∗ = argmaxM∈Mminf ′∈EMD(f ,ϵ ) Rev(M, f

′) with allocation
and payment (x ,p) takes the following form: there exist s ≥ 1 and a
set {(a1,b1), . . . , (as ,bs )} such that λ = 1/(

∑s
i=1 ln

bi
ai ), and

x(v) =


0 0 ≤ v < a1

λ(
∑i−1
j=1 ln

bj
aj + ln

v
ai ) ai ≤ v ≤ bi ,∀1 ≤ i ≤ s

λ
∑i
j=1 ln

bj
aj bi < v < ai+1,∀1 ≤ i ≤ s − 1

1 bs < v,

Note that given the allocation rule, the payment can be computed
using Myerson’s payment identity [13]. Here, instead of proving
that Theorem 3.3 is correct using duality, we present another in-
tuitive idea to show the correctness of the theorem. This idea will
help us have a further understanding of the result. First, we plot
the revenue curve of the known distribution, where the x-axis is
the quantile of the distribution, i.e., the probability that is larger
than or equal to a certain value.

-

6

γ

R(q)

F

G

qs q′s q1 q′10 1 q
Figure 1: The revenue curve of the known distribution F and
the distribution G with minimum revenue.

From the graph, we can easily verify that for any constant ϵ ,
there exists a unique γ that intersects the distribution at quantiles
in set Q = {(q1,q′1), . . . , (qs ,q

′
s )}, and the resulting distribution

G satisfies that EMD(G, F ) = ϵ . Letting {(a1,b1), . . . , (as ,bs )} be
the value that corresponds to the set Q under distribution F , ac-
cording to the characterization of the single item optimal Bayesian
mechanism [12, 13], the mechanismM∗ designed in Theorem 3.3 is
optimal for distributionG . Moreover, according to the payment rule
defined in Theorem 3.3, the distribution with minimum revenue is
exactly distributionG . Therefore, considering any other mechanism
M ′, we have

min
f ′∈EMD(f ,ϵ )

Rev(M ′, f ′) ≤ Rev(M ′,G) ≤ Rev(M∗,G)

= min
f ′∈EMD(f ,ϵ )

Rev(M∗, f ′),

and Theorem 3.3 holds.

3.2 Deterministic Mechanism
In real world, the complex randomized algorithm may not be ap-
plicable. Instead, people will try to approximate the optimal with
simple deterministic mechanisms. When the distribution is known
and there is a single item, the deterministic mechanism is indeed
optimal. Here in this section, we will show that when the known
distribution is within ϵ earth mover’s distance of the true distribu-
tion, the deterministic mechanism is still a good approximation to
the optimal randomized mechanism with respect to the max-min
objective. Formally, we have the following theorem. Note that in
this section, we do not require the distribution known by the seller
is regular.

Theorem 3.4. When there is a single buyer andM is the set of all
IR-IC mechanisms, for any distribution f , let

R = max
M∈M

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′)

For any constant ϵ ≤ R, there exists a deterministic mechanism M

such that

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) ≥ R − 2
√
ϵR + ϵ .
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Proof. It is obvious that R ≤ OPT (f ), where OPT (f ) is the
optimal revenue of f . So we only need to prove that

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) ≥ OPT (f ) − 2
√
ϵ ·OPT (f ) + ϵ .

Note that for distribution f , there exists a simple deterministic
mechanism that achieve optimal revenue. Assume that this mecha-
nism posts price a and sells the itemwhen the buyer’s value is larger
than or equal to a. We assume the item is sold with probability b.
Clearly, ab = OPT (f ). Suppose we have a new mechanism that
posts price x ≤ a− ϵ

b . Note that since x ≥ 0, ϵ ≤ ab. Next we bound
the probability Prv∼f ′∈EMD(f ,ϵ )(v ≥ x). Note that the probability
of v ≥ x is at least the probability of v ≥ a in distribution f minus
the probability that can be moved from above a to below x . Hence,
we have

Pr
v∼f ′∈EMD(f ,ϵ )

(v ≥ x) ≥ Pr
v∼f

(v ≥ a) −
ϵ

a − x
= b −

ϵ

a − x
.

Therefore,

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) ≥ x(b −
ϵ

a − x
).

By optimizing x and set it as a −
√

aϵ
b , we have

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) ≥ ab − 2
√
abϵ + ϵ

= OPT (f ) − 2
√
ϵ ·OPT (f ) + ϵ .

Thus finishes the proof of Theorem 3.4. □

Theorem 3.5. When there is a single buyer and M is the set of
all IR-IC mechanisms, for any constant ϵ ≤ R, there exists a dis-
tribution f such that for any deterministic mechanism M, letting
R = maxM∈Mminf ′∈EMD(f ,ϵ ) Rev(M, f

′),

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) ≤ R −
1
2
√
ϵR.

Proof. Consider the equal revenue distribution on support [1,h].
Applying the result in Theorem 3.1, we can calculate R ≈ 1 −
ϵ
lnh . When we set h → ∞, we know that the maximin revenue
approaches 1.

Nowwe consider the deterministic mechanism which posts price
x ≤ h. We divide the analysis into 2 cases: x < 1 and x ≥ 1. When
x ≥ 1, suppose b is the value such that exactly the probability
between x and b is moved to below x . Then, we have∫ b

x
(
1
v
−

1
b
)dv = ϵ

−1 +
x

b
+ ln

b

x
= ϵ .

When ϵ is small, the revenue of posting price x is x
b ≤ 1

1+
√
ϵ+ ϵ2

≤

1 −
√
ϵ
2 .

When x < 1, also let b be the value such that exactly the proba-
bility between x and b is moved to below x . Then, we have∫ b

1
(
1
v
−

1
b
)dv + (1 −

1
b
)(1 − x) = ϵ

lnb +
x

b
− x = ϵ .

When ϵ is small, we have x ≈ b − ϵb
b−1 , and the revenue of posting

price x is x
b ≈ 1 − ϵ

b−1 , which is increasing with respect to b.
However, the maximum value of b is reached when x approaches
1. Therefore, the maximum revenue is achieved in case 1 when
x ≥ 1, and minf ′∈EMD(f ,ϵ ) Rev(M, f

′) ≤ 1 −
√
ϵ
2 . The exact form

of the inequality in the statement of Theorem 3.5 can be similarly
derived by setting the known distribution f as the equal revenue
distribution on [R,∞). □

4 MULTIPLE BUYER CASE
In this section, we consider the problem where the seller tries to sell
a single item tom i.i.d. buyers. Note that for the multi-buyer case,
the max-min problem is not convex. Therefore, we cannot apply
the duality approach as in the single buyer case to have a character-
ization for the distribution with minimum revenue. In this section,
we will focus on a special class of mechanisms, second price mecha-
nism with reserves, and as we will show later, the characterization
for this set of mechanisms is not trivial. Moreover, in the single
item environment, when the distributions are i.i.d. and regular, the
second price mechanism with a fixed reserve is optimal for revenue
maximization. Therefore, it is nature to conjecture that this simple
mechanism still has approximately optimal performance in our
robust setting. We leave the characterization of the approximation
ratio of the second price mechanism with fixed reserve as an open
problem. In this section, we will show how to efficiently compute
the optimal robust reserve price for the second price auction. In
our following analysis, we assume that the known distribution f is
a Lipschitz continuous distribution. Note that for any distribution
f ′ ∈ EMD(f , ϵ), f ′ may not be Lipschitz continuous.

4.1 Second Price Mechanism
Before stating our computational result, we start with the charac-
terization of the distribution within ϵ earth-mover’s distance that
generates the minimum revenue for the second price auction M.
This characterization will help us understand the minimization part
of our max-min problem for the multi-buyer case, which eventually
will help us design the algorithms for finding the optimal reserve
in the robust setting.

In second price auction, the expected revenue is the expected
value of the second highest buyer. Intuitively, the distribution that
generates minimum revenue is the one that differs from the known
distribution only in the quantile corresponding to the second high-
est buyer. We formalize this idea and prove it in Theorem 4.1.

Theorem 4.1. Let M be the second price mechanism, let д ≜
argminf ′∈EMD(f ,ϵ ) Rev(M, f

′) denote the distribution with min-
imum revenue for mechanism M, and let G be its corresponding
cumulative distribution. Let k be the smallest number such that
m−2
m−1 ≤ G(k), we have

(1) EMD(G, F ) = ϵ .
(2) There exists l ≥ k such that G(v) = G(k) for any k ≤ v ≤ l ,

and G(v) = F (v) for any v > l .
(3) For any v < k,G(v) = F (v).

Proof. First note that if EMD(G, F ) < ϵ , by simply moving
some probability from higher value to lower value, by revenue
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monotonicity, the expected revenue will decrease. Therefore, we
have EMD(G, F ) = ϵ .

Note that the probability that the second price is larger than a
value v is 1 minus the probability that all value is below value v
and the probability that only one value is above value v . That is,

Pr(second price > v) = 1 − F ′m (v) −m · F ′m−1(v) · (1 − F ′(v))

= 1 + (m − 1)F ′m (v) −m · F ′m−1(v).

Therefore, the expected revenue of running second price mecha-
nism M with distribution f ′ is

Rev(M, f ′) =

∫ ∞

0
Pr(second price > v)dv

=

∫ ∞

0
(1 + (m − 1)F ′m (v) −m · F ′m−1(v))dv . (12)

Since we require that distribution f ′ ∈ EMD(f , ϵ), we know
that distribution f ′ satisfies the constraints that

F ′(∞) = 1,
∫ ∞

v=0
|F ′(v)−F (v)|dv ≤ ϵ, and F ′(v ′) ≤ F ′(v),∀v ′ ≤ v .

(13)
Moreover, since moving the distribution from a lower value to a
higher value will not reduce the revenue. In order to find the distri-
bution that generates minimum revenue, we can assume without
loss of generality that F (v) ≤ F ′(v),∀v . Next we show that with
this assumption, minimizing equation 12 subject to constraint 13
is equivalent to minimizing equation 12 subject to the following
constraint, with a changing of variable F ∗.

F ∗(∞) = 1,
∫ ∞

v=0
|F ∗(v) − F (v)|dv ≤ ϵ, and F (v) ≤ F ∗(v),∀v .

Let J∗(y) be the measure of the set {v |v > 0 and F ∗(v) ≤ y} and
let F ′(v) = inf{y |J∗(y) ≥ v}. Note that in constraint 13, F ′(∞) =

1, F ′(v) is monotone non-decreasing and the measure of the set
{v |v ≥ 0 and F ′(v) ≤ y} equals J∗(y). Moreover, let ψ (x) = 1 +
(m − 1)xm −mxm−1 and according to Lebesgue integration,

Rev(M, F ′) =

∫ ∞

v=0
ψ (v) d J∗(v) = Rev(M, F ∗).

Let J (y) be the measure of the set {v |v > 0 and F (v) ≤ y}. Since
for any v , F ∗(v) ≥ F (v), we have

{v |v > 0 and F ∗(v) ≤ y} ⊆ {v |v > 0 and F (v) ≤ y},

which indicates that for any valuev , J∗(v) ≤ J (v), and F ′(v) ≤ F (v).
Finally, we show that∫ ∞

v=0
|F ′(v) − F (v)|dv =

∫ ∞

v=0
[F ′(v) − F (v)]dv

=

∫ ∞

v=0
[F ∗(v) − F (v)]dv =

∫ ∞

v=0
|F ∗(v) − F (v)|dv

and the constructed distribution F ′ satisfies all the constraints in
(13). Therefore, with the constraint F (v) ≤ F ′(v), we can neglect
the monotonicity constraint of F ′(v).

Now we are ready to prove the part (2) of the theorem. Let v ′
be the smallest number such that ∀v ≥ v ′,G(v) = F (v). If v ′ ≤ k ,
by setting l = k , part (1) holds. If v ′ > k , set l = v ′. Assuming for
contradiction that that G(l) > G(k), according to the construction

of v ′, there exists a value s ∈ (k, l) and a sufficiently small ϵ ′ such
thatG(v) > F (v),G(v) > G(k) for anyv ∈ [s −ϵ ′, s +ϵ ′]. We define

δ =
1
2

min
v ∈[s−ϵ ′,s+ϵ ′]

min{G(v) − F (v),G(v) −G(k)}.

We note that δ > 0. Construct a new “distribution"G ′ withG ′(v) =
G(v)+δ for anyv ∈ [s−ϵ ′, s],G ′(v) = G(v)−δ for anyv ∈ [s, s+ϵ ′].
We note that G ′ may not be a real distribution since it may not be
monotone. But we have gotten rid of the monotonicity constraint.
It is easy to verify that G ′ satisfies the required constraint as our
choice of δ . Now we define

D(δ ) ≜ Rev(M,G) − Rev(M,G ′)

=

∫ ∞

0
[(m − 1) · (Gm (v) −G ′m (v))

−m · (Gm−1(v) −G ′m−1(v))]dv

=

∫ s

s−ϵ ′
[(m − 1) · (Gm (v) − (G(v) + δ )m )

−m · (Gm−1(v) − (G(v) + δ )m−1)]dv

+

∫ s+ϵ ′

s
[(m − 1) · (Gm (v) − (G(v) − δ )m )

−m · (Gm−1(v) − (G(v) − δ )m−1)]dv .

Obviously, D(0) = 0. Moreover, letting ϵ∗ be a constant such that
0 < ϵ∗ < ϵ ′, when δ = 0, we have

dD(δ )

dδ

���
δ=0

=

∫ s

s−ϵ ′
m(m − 1) · (Gm−2(v) −Gm−1(v))dv

+

∫ s+ϵ ′

s
m(m − 1) · (Gm−1(v) −Gm−2(v)) dv

≥ m(m − 1)
[
(ϵ ′ − ϵ∗)(Gm−2(s − ϵ∗) −Gm−1(s − ϵ∗))

+ϵ∗(Gm−2(s) −Gm−1(s))
]

+m(m − 1)
[
ϵ∗(Gm−1(s) −Gm−2(s))

+(ϵ ′ − ϵ∗)(Gm−1(s + ϵ∗) −Gm−2(s + ϵ∗))
]

= m(m − 1)(ϵ ′ − ϵ∗)

·

∫ Gs+ϵ∗

Gs−ϵ∗
[(m − 1)xm−2 − (m − 2)xm−3]dx > 0.

The above inequality holds because xm−2 − xm−1 is monotone
decreasing when x ≥ m−2

m−1 , and G(v) ≥
m−2
m−1 when v ≥ s − ϵ ′ > k .

Therefore, there exists a sufficiently small δ such that D(δ ) > 0,
which means that the revenue of G ′ is smaller, a contradiction.
Hence, part (2) of the theorem is correct.

The proof of part (3) is similar to the proof of part (2). Suppose
otherwise, there exists s , ι and ϵ ′ such that for anyv ∈ [s−ϵ ′, s+ϵ ′],
G(v) < m−2

m−1 − ι and G(v) > F (v) + ι. Consider anther distribution
G ′ withG ′(v) = G(v) − ι for any v ∈ [s − ϵ̂, s],G ′(v) = G(v) + ι for
anyv ∈ [s, s+ ϵ̂]. Applying the same approach before, we can verify
that for sufficiently small ι, the revenue of G ′ is smaller because
the second derivative of 1+ (m − 1)xm −m · xm−1 is negative when
x < m−2

m−1 , which is a contradiction. The detailed proof is omitted
here. Therefore ∀j < k , G(j) = F (j). By combining all the proofs
together, Theorem 4.1 holds. □
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4.2 Second Price With Fixed Reserve
As shown above, we have characterized the distribution with min-
imum revenue in the second price mechanism. By extending the
result to second price mechanism with a fixed reserve, we then
show how to use this characterization as a tool to design a FPTAS
algorithm for finding the optimal robust reserve. Here we assume
the value distribution has bounded support.

Theorem 4.2. For any constant ϵ, ϵ ′, if the buyers’ value distribu-
tion is Lipschitz continuous with support in [0,H ], andM is the set of
second price mechanisms with reserves, there exists a polynomial time
(poly(m, 1ϵ ′ ,H )) algorithm for finding mechanism M∗ such that

min
f ′∈EMD(f ,ϵ )

Rev(M∗, f ′) ≥ max
M∈M

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) − ϵ ′,

whereM is the set of second price mechanisms with fixed reserves.

Note that we do not have any close form formula for the min-
imum revenue within ϵ earth mover’s distance. In order to find
the approximately optimal reserve, we need to limit the possible
choice of reserves. Since the buyers’ values locate in support [0,H ],
we consider the reserve being the multiply of ϵ1. That is, we only
consider the reserve in the set R = {i · ϵ1}i ∈[ Hϵ1 ]

. We prove that this
is sufficient to compute the approximately optimal reserve.

Lemma 4.3. There exists a second price mechanism M ′ with re-
serve r ′ ∈ R such that

min
f ′∈EMD(f ,ϵ )

Rev(M ′, f ′) ≥ max
M∈M

min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) − ϵ1.

Proof. Let the optimal mechanism be M∗ =

argmaxM∈Mminf ′∈EMD(f ,ϵ ) Rev(M, f
′). Suppose the mecha-

nismM∗ has reserve r∗. By simply setting r ′ = max{r ∈ R |r ≤ r∗},
we only need to prove that for any distribution f ′ ∈ EMD(f , ϵ),

Rev(M ′, f ′) ≥ Rev(M∗, f ′) − ϵ1. (14)

In fact, by construction of R, r ′ ≥ r∗ − ϵ1. Therefore, for any val-
uation profile, the payment in M ′ is at least the payment in M∗

minus ϵ1. Hence, for any distribution f ′, the expected payment
satisfies Equation 14, and Lemma 4.3 holds. □

Proof of Theorem 4.2. By Lemma 4.3, we can focus on com-
puting the minimum revenue for a fixed reserve price r . To begin
with, we explicitly express the revenue of a distribution in terms
of its cumulative probability function. For simplicity, we assume
without loss of generality that a buyer can only get the item if
he bids strictly larger than the reserve. Then, we can rewrite the
expected revenue of the second price with reserve is

Rev(M, f ′) = r · Pr(1st price > r ) +

∫ ∞

r
Pr(2nd price > v)dv

=r (1 − F ′m (r )) +

∫ ∞

r
(1 + (m − 1)F ′m (v) −m · F ′m−1(v)) dv .

First, let д ≜ argminf ′∈EMD(f ,ϵ ) Rev(M, f
′) denote the worst

distribution for the second price mechanism with reserve M, and
G is its corresponding cumulative distribution. Note that it is mean-
ingless to move the distribution below the reserve r . Therefore, for
any v ≤ r ,G(v) = F (v). Moreover, similar to Theorem 4.1, we have
EMD(G, F ) = ϵ . Assuming that k is the smallest number such that
G(k) ≥ max{G(r ), m−2

m−1 }, we have the following characterization.

(1) There exists l ≥ k such that G(v) = G(k) for any k ≤ v ≤ l ,
and G(v) = F (v) for any v > l .

(2) For any r ≤ v < k,Gv = max{F (v),G(r )}.
The proof of the first property is identical to the Theorem 4.1.

For the second property, as stated in Theorem 4.1, in order to have
the distribution with minimum revenue, for any v , we always have
G(v) ≥ F (v). By monotonicity of the cumulative probability func-
tion, we have G(v) ≥ G(r ) for any v ≥ r . Therefore, For any
r ≤ v < k,G(v) ≥ max{F (v),G(r )}. Assuming that the equality
does not hold, there exists s and ϵ ′ such that for anyv ∈ [s−ϵ ′, s+ϵ ′],
G(v) > max{F (v),G(r )}. Similar to the proof of Theorem 4.1, we
can construct another valid distribution G ′ with smaller revenue,
whereG ′(v) = G(v) − δ for any v ∈ [s, s + ϵ ′],G ′(v) = G(v)+ δ for
any v ∈ [s − ϵ ′, s], and δ is also a sufficiently small constant.

With these characterization, we know that it is sufficient to
compute the valueGr ,k and l to determine the distributionG . Note
that those three variable satisfies the constraint that EMD(G, F ) = ϵ .
Therefore, it is sufficient for us to determine k and l .

First, we discretize the cumulative probability space [0, 1] into
Q =

{[ ϵ2 ·i
m2H ,

ϵ2 ·(i+1)
m2H

]}
i ∈[m

2H
ϵ2

]
. We show that for any mechanism

M, there exists a distributionG ′withk ′, l ′ such thatk ′ = max{i |F (i) ∈
Q, i ≥ k}, l ′ = max{i |F (i) ∈ Q, i ≤ l}, and

Rev(M,G ′) ≤ min
f ′∈EMD(f ,ϵ )

Rev(M, f ′) +O(ϵ2).

If the above statement is true, then by brute force searching all
possible combinations of k, l , we can approximately estimate the
minimum revenue formechanismM. Note that by our construction,
G(v) − 2ϵ2

m2H ≤ G ′(v) ≤ G(v) for any v ∈ [k, l], G ′(r ) ≥ G(r ), and

Rev(M,G ′) − Rev(M,G)

≤

∫ l

k
((m − 1)G ′m (v) −m ·G ′m−1(v)

−((m − 1)Gm (v) −m ·Gm−1(v)))dv

≤ (l − k)((m − 1)G ′m (k) −m ·G ′m−1(k)

−((m − 1)Gm (k) −m ·Gm−1(k)))

≤ mH (Gm−1(k) −G ′m−1(k)) ≤ O(ϵ2).

By carefully choosing ϵ1 and ϵ2, Theorem 4.2 holds. □

5 CONCLUSION AND FUTURE DIRECTION
We characterized the optimal robust mechanism for single-buyer
case and the optimal robust reserve price for the second price auc-
tion for the multi-buyer case. However, many interesting questions
are left open. For starters, it would be exciting to bound the gap be-
tween the worst case performance of the second price mechanism
with a fixed reserve and the optimal robust mechanism. Moreover,
we do not have any characterization of the optimal robust mecha-
nism for this max-min goal when there are more than one buyer.
For this problem, we conjecture that when the known distribution
is regular, second price mechanism with randomized reserves is
optimal. Another interesting direction is to investigate this problem
in the multi-parameter setting. The revenue maximization problem
for multi-parameter setting is notoriously hard. So, a good starting
point would be analyzing the performance of the simple constant
approximation mechanisms for this case.

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1589



REFERENCES
[1] Dirk Bergemann and Karl Schlag. 2008. Robust Monopoly Pricing. Journal of

Economic Theory 146, 6 (2008), 2527–2543.
[2] Yang Cai and Constantinos Daskalakis. 2017. Learning Multi-item Auctions with

(or without) Samples. In 58th Symposium on Foundations of Computer Science
(FOCS’17). 516–527.

[3] Yang Cai, Constantinos Daskalakis, and S Matthew Weinberg. 2012. An algo-
rithmic characterization of multi-dimensional mechanisms. In 44th Annual ACM
Symposium on Theory of Computing (STOC’12). 459–478.

[4] Yang Cai, Constantinos Daskalakis, and S Matthew Weinberg. 2012. Optimal
multi-dimensional mechanism design: Reducing revenue to welfare maximization.
In 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’12).
130–139.

[5] Gabriel Carroll. 2017. Robustness and Separation in Multidimensional Screening.
Econometrica 85, 2 (2017), 453–488.

[6] Gabriel D Carroll and Ilya R Segal. 2016. Robustly Optimal Auctions with Un-
known Resale Opportunities. Social Science Electronic Publishing (2016).

[7] Jing Chen, Bo Li, Yingkai Li, and Pinyan Lu. 2018. Bayesian Auctions with
Efficient Queries. In 45th International Colloquium on Automata, Languages and
Programming (ICALP’18), brief announcements, to appear.

[8] Richard Cole and Tim Roughgarden. 2014. The sample complexity of revenue
maximization. In 46th Annual ACM Symposium on Theory of Computing (STOC’14).
243–252.

[9] Nikhil Devanur, Jason Hartline, Anna Karlin, and Thach Nguyen. 2011. Prior-
independent multi-parameter mechanism design. In International Workshop on
Internet and Network Economics (WINE’11). 122–133.

[10] Nikhil R Devanur, Zhiyi Huang, and CA Psomas. 2016. The sample complexity
of auctions with side information. In 48th Annual ACM Symposium on Theory of
Computing (STOC’16). 426–439.

[11] John C Harsanyi. 1967. Games with incomplete information played by “Bayesian”
players, I–III. Part I: The basic model. Management Science 14, 3 (1967), 159–182.

[12] Jason Hartline and Anna Karlin. 2007. Profit maximization in mechanism design.
In Algorithmic Game Theory, Noam Nisan, Tim Roughgarden, Éva Tardos, and
Vijay V Vazirani (Eds.). Cambridge, 331–361.

[13] Roger B Myerson. 1981. Optimal auction design. Mathematics of Operations
Research 6, 1 (1981), 58–73.

[14] Michael Ostrovsky and Michael Schwarz. 2011. Reserve prices in internet adver-
tising auctions: a field experiment. EC 11 (2011), 59–60.

[15] Tim Roughgarden and Inbal Talgam-Cohen. 2018. Approximately optimal mech-
anism design. arXiv preprint arXiv:1812.11896 (2018).

Session 6B: Auctions and Mechanism Design AAMAS 2019, May 13-17, 2019, Montréal, Canada

1590


	Abstract
	1 Introduction
	1.1 Our Problem and Results
	1.2 Previous Work on Robust Mechanism Design

	2 Preliminaries
	3 Single Buyer Case
	3.1 Irregular Distribution
	3.2 Deterministic Mechanism

	4 Multiple Buyer Case
	4.1 Second Price Mechanism
	4.2 Second Price With Fixed Reserve

	5 Conclusion and Future Direction
	References



