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ABSTRACT
Agent-based modeling of multi-agent systems has enormous po-
tential with applications in modeling social, economic, medical
and other application domains containing temporal data. We pro-
pose an unsupervised approach to discovering common roles by
observing agents over time, allowing us to construct a role-based
representation of multi-agent systems that aids in understanding
and interpreting the state of the system. We validate our approach
on both a soccer and a StarCraft dataset, and show that unsuper-
vised role discovery through observation can provide meaningful
insight into the state of a multi-agent system, aiding or even re-
placing game state data for interpretation or understanding of the
system.
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1 INTRODUCTION
Agent-based models (ABM) represent phenomena as a multitude
of different agents, each with their own goals, memory, tasks, and
actions. By working independently or together, agents move to-
ward a common goal, and these models often produce interesting
emergent behaviors or insights that analytical and algorithmic mod-
els fail to reproduce [5]. Much of the research on ABM has been
dedicated to accurately modeling agents themselves, and there has
been less focus on studying multi-agent system (MAS) behaviors
at a higher level. Analysis of MAS behavior can be challenging, as
there may not be ground truth data about the underlying actions
or motivations of individual agents.

Recently, role discovery has become a popular approach to under-
standing large quantities of unlabeled data. Role discovery provides
insights into large amounts of data by autonomously identifying
subsets of the data that are in some way related, often by similar
graphical structures in social networks, such as in [20]. However,
current approaches to role discovery are limited in that they re-
quire data to either be represented as a graph, or in some other way
encode how agents are related to each other [11].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We introduce a new approach to understanding MAS through
role discovery without the need for human input or supervision. By
taking advantage of recent advances in unsupervised deep learning,
we are able to use observations of individual agents over time in
order to identify common subsets of theMAS data by finding similar
behaviors over time, rather than by similar network connections
or static agent histories. Our approach allows for interpretation of
MAS strictly through observation, without the need to construct a
graph to model relationships between agents, or the need to label
agent actions, behaviors, or histories.

Our work makes three primary contributions. First, we intro-
duce a novel way to interpret MAS by observing agents over time
and identifying common roles, rather than by constructing graphs
or labeling data. Second, we present multiple deep clustering ap-
proaches which employ autoencoders to reduce the dimensionality
of temporal data for more interpretable and useful clusters. Finally,
we validate these techniques using a soccer game dataset and a
StarCraft replay dataset, and demonstrate how unsupervised role
discovery can provide labels which improve human interpretability
of the data and predictive model accuracy. Our results show that
our role-based interpretation of MAS allows for greater semantic
understanding of the system, and that our roles can meaningfully
and usefully aid in the understanding of the state of a MAS.

2 RELATEDWORK
Our work is related to several active areas of research, which we
summarize briefly below.

2.1 Role Discovery
Role discovery has become a greater area of interest as social net-
works have gained popularity and there is a growing amount of
unlabeled data from known individual agents. The goal of role
discovery is to identify and assign roles to agents within some
unlabeled dataset. Role discovery has been explored in relation
to networks [11, 22, 29], Wikipedia editors [1, 28, 31], community
structure [12, 15], email interactions [19], and more [9, 24, 32].

Traditionally, much of theworkwithin role discovery approaches
the problem by representing the data in a graph, as in [13, 22, 29].
Role discovery is then the challenge of finding nodes that have
similar structural patterns, i.e. the same number of edges, or the
same connectivity pattern, without paying any attention to the
content of the node. Recently, however, researchers have begun to
approach role discovery with feature-based representations, rather
than graph-based representations of the data, as in [1, 19, 20, 31].
That is, research is beginning to examine the semantics of agent
actions and behavior, and not simply the syntactics of how they are
connected in a graph. Similarly, our work approaches role discovery
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as a feature-based problem, ignoring edges to neighbors or con-
nections between agents. Our work is unique in that we discover
roles using only brief temporal observations of agents, with no
consideration for edges between agents.

2.2 Temporal Clustering
As deep networks continue to make great strides in supervised
learning for images and videos, more attention is being turned
towards unsupervised learning to attempt to leverage massive
amounts of unlabeled data. In particular, Long Short-Term Mem-
ory (LSTM) networks have been used as autoencoders to condense
high-dimensional temporal data into much smaller and more man-
ageable vectors for clustering [2]. Clustering loss functions have
even been developed for use by deep networks [6, 14, 30], where the
input is an image and the output is a cluster label. We make use of
an unsupervised deep network in our work, though our approach
differs in that we seek to cluster temporal sequences, not images.

Our work is also related to activity recognition, which a recent
survey [34] reviews various approaches for. Our work differs from
activity recognition in that we seek to identify behaviors or roles,
which are a higher level abstraction of activities. The same activity
may be common in several different roles, where the only differen-
tiation is the context in which the activity is found.

Finally, research within motif discovery seeks to discover sim-
ilar sequences within temporal data. Motfis are “short approxi-
mately repeated patterns” [33] commonly used in medicine or ge-
nomics [25], and can be considered building blocks of activities.
Unsupervised motif discovery [26] has made progress in finding
multi-dimensional sequences with high similarity, which aided in
unsupervised action discovery. As we intend to discover roles, our
work seeks to find higher-level behavioral commonalities.

2.3 Multi-Agent Systems
Existing research in MAS has evaluated the impact of organizations
of agents, and the ways that viewing MAS as organized subsets of
agents rather than by attempting to model each individual agent
[10] can improve overall performance of the system. Similarly, [7]
have examined the ways that roles can improve interpretation of
a MAS, though their work assumes roles are known in advance,
and represents agents and roles as a graph for simplification of the
MAS.

Research in sports analysis has taken a similar approach, labeling
agents by their position in order to make simplifying assumptions
about where they should be and how they should impact the game.
Using this information, researchers are able to identify scoring
opportunities [18], team formations [4], or even identify teams
themselves based on the team compositions that they tend to use [3].
Recent work has even found that, using roles as labels for training
different imitation learning models on defensive movements, it is
possible to generate an accurate prediction of where defenders will
move in response to incoming attacks [16]. Player positions can be
identified by examining heat maps of player movement throughout
a game, and establishing various mean (x,y) positions on the field
[4]. We examine a soccer game as a MAS in our work, though our
work is distinct in that we seek to identify a high level abstraction
of player positions, namely roles that different players fulfill, rather

than positions they are in. Additionally, we do so by using player
behavior without considering their precise location on the field or
how they move the ball. This removes to possibility of discovering
roles using location-based heat maps, and makes the problem focus
more on agent behavior and movement rather than position on the
field.

Real-time strategy (RTS) games are popular within robotics and
computer science, as they represent challengingMAS environments,
often with massive state-action spaces, partial observability, adver-
sarial agents, and non-deterministic, loosely-structured environ-
ments. RTS games have been used as a testbed for a variety of
challenges, from plan recognition [23] to reinforcement learning
[27]. Our work approaches RTS games as a MAS, where units rep-
resent individual agents that may conform to some latent hierarchy
that can be used to aid in human understanding of the game, or in
a model’s interpretation of the game state.

3 DATASETS
In order to evaluate our approach and explore role discovery through
observation, we make use of two datasets.

3.1 Soccer Dataset
The first dataset we use is a soccer dataset from the DEBS 2013
Soccer Grand Challenge1. This dataset includes location data for
all players and the ball in a thirty-minute2 game with eight players
on each side. In order to avoid clustering by (x,y) position on the
field, we construct and employ the following features:
• Distance From Home: distance a player is from their own
team’s goal
• Distance From Enemy: distance a player is from their oppo-
nent’s goal
• Distance From Ball: distance a player is from the ball
• Allies Nearby: number of teammates within 10 meters
• Enemies Nearby: number of opponents within 10 meters

Distance features are normalized by the length of the field, and
teammate or opponent features are normalized by the number of
agents on each team. If information is ever missing, such as from a
sensor malfunction, it is replaced with -1. We sample the soccer data
at approximately 16fps and construct 16-sample windows, giving
us 5700 1-second clips.

3.2 StarCraft Dataset
The second dataset we explore is a large dataset of StarCraft: Brood
War replays [17]. As we are exploring the game as a MAS, we
randomly sample 100 games with at least one Terran player for
training, and we randomly sample 225 Terran vs. Terran games for
evaluation. In both our training and evaluation datasets, we only
consider mobile Terran units. The data is extracted using the Brood
Wars API3, which yields a wealth of information for every agent in
each frame. We use the following features for every unit:
• Distance From Home: distance an agent is from their nearest
base

1https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/tech/ek/download.html
2We only use about twenty five minutes of this data, as the ball sensor stopped
functioning near the end of the first half
3https://github.com/bwapi/bwapi
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• Energy: amount of energy an agent has (a resource for special
abilities)
• Visible: binary flag for whether an agent is visible to enemies
or not
• Distance Moved: distance an agent has moved since the last
sampled frame
• Nearby Allies: number of allied agents within 10 units4
• Nearby Enemies: number of visible enemy agents within 10
units
• Percent Health: percent of health an agent has remaining
• Current Cooldown: percent of an agent’s cooldown remaining
on their weapon

Note that the Brood Wars API contains additional data that we
leave out, either because it is extraneous (e.g. “burrowed”, “irradi-
ated”, “blind”, etc.), or because it makes the role assignment problem
trivial (e.g. “attacking”, unit type, “harvesting minerals”, etc. ). As in
our soccer dataset, distances are normalized by the size of the map,
and neighbors are normalized by the size of the army. If information
is ever missing, such as if an agent dies during a window of observa-
tion, attributes are replaced with -1. We sample the StarCraft data
at approximately 2fps and construct 16-sample windows, giving us
538,000 clips for training, and 1,125,000 clips for evaluation, where
each clip is just over 8 seconds long.

4 APPROACH
As discussed in Sec. 2.2, there are several approaches to unsuper-
vised learning for temporal data. To address the role discovery
problem, we extend recent deep embedded clustering (DEC) work
[30] and perform dimensionality reduction and clustering with one
network, trained in two parts. DEC works by first pretraining a
network as an autoencoder, and then exchanging the decoding
layers for a cluster layer, which learns cluster centroids as weights.
The clustering layer is initialized with k-means over embeddings
from the encoding portion of the network, and then optimized over
an unsupervised loss function. The unsupervised loss function is
the KL divergence between the current cluster assignments and
a target distribution P , where P is defined for every point in the
dataset by squaring the probability of that point belonging to each
cluster, and normalizing by the frequency of each cluster. In other
words, for every point i in the data and for every cluster k

pi,k =
q2i,k/fj∑
k ′ q

2
i,k ′/fk ′

(1)

where qi,k is the probability of data point i belonging to cluster k ,
and fk is the frequency for cluster k , normalized across all clusters
k ′ ∈ K . Training in two parts allows the network to first learn a
useful encoder for the data, and then improve the encoding while
learning a function for clustering the embeddings.

Throughout our approach, we experimented with a variety of
clustering methods for our clustering layer initialization and for
running an abalation study. Methods we explored include: k-means,
Gaussian-mixture models (GMMs), hidden Markov models (HMMs),
spectral clustering, and agglomerative clustering. We found that
spectral and agglomerative clustering consistently degraded into

4The average sight radius for StarCraft units we consider is 10

Figure 1: Visualization of our entire role discovery pipeline
with our different baselines. RS: Raw Single frame data.
RT: Raw Temporal data. E-LSTM/E-Linear: Embeddings + k-
means. DEC: Full DEC network output.

only two clusters, and GMMs performed on par with k-means. For
simplicity, we only report results with k-means.

An overview of the approaches explored in this paper is pre-
sented in Fig. 1, and discussed in detail below. Our approach begins
with single frames of data, each of which represents a static ob-
servation of an agent. These single frames are then stacked into
a matrix which represents a short temporal window of observa-
tion (1-8 seconds) for that particular agent. Our autoencoders then
receive these windows as input data.

Prior work on DEC has utilized a convolutional autoencoder
for clustering image data. In this work, we consider two alternate
approaches in order to encode sequential observations of invidual
agents. The first autoencoder we consider is an LSTM, which sam-
ples each timestep in series. The LSTM autoencoder uses a single
LSTM for dimensionality reduction, downsampling the input into
a lower dimension embedding of size Z . This embedding is then
replicated to reproduce the window size of the input, before being
passed through a separate decoding LSTM, which produces the
output for comparison to the input.

The second autoencoder we consider is a linear autoencoder,
which flattens all incoming timesteps into one long vector. This
single vector is then downsampled by a linear layer into a lower
dimension embedding of size Z , and finally upsampled back to the
original dimensionality by a decoding linear layer. The decoded
vector is then broken back into separate timesteps and compared
with the input.

As in the original DECwork, we then exchange the decoding por-
tions of our autoencoders for a cluster layer, and continue training.
Once training is complete, the networks take in temporal observa-
tions of agents and output cluster labels. We refer to these models
as LSTM DEC and Linear DEC, respectively.

We evaluate the contributions of each component of the DEC
models by performing a thorough ablation study on the network.
First, we compare to clustering on the raw single-frame data (RS)
without considering a window of activity. Second, we compare to
clustering on raw temporal data (RT), simply stacking frames over
a window into a single vector. Finally, we compare to clustering on
the Z -dimensional embeddings generated by the encoding portions
of our DEC models (E-LSTM and E-Linear). By comparing each of
these to the output from the DEC networks we train, we can validate
the efficacy of temporal data over static data, and the efficacy of
the embedding network and clustering layer independently.

The final challenge we face in our approach is selecting an ap-
propriate number of clusters. Related role discovery work, such as
[31], often involves searching through a range of possible clusters
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that a human has pre-specified, and manually inspecting the results
of different numbers. As our roles represent patterns of behavior
in different situations, it is difficult for us to determine the role
that a cluster represents without manually watching many samples
of that cluster. In order to approach this problem, we employ the
Davies-Bouldin index [8], as it provides an unsupervised, compact,
and fast metric for measuring overall cluster density and separation,
and the results from the Davies-Bouldin index were comparable to
results from slower or more memory intensive methods, such as
the Silhouette Index [21]. We provide a brief overview of the metric
below.

4.1 Davies-Bouldin Index
A cluster’s dispersion, S , is measured as the average distance be-
tween a point in the cluster and the cluster centroid.

Sk =
1
Nk

Nk∑
i=1

dist (xi ,Ck ) (2)

Where Ck refers to the centroid of cluster k , Nk is the size of
cluster k , xi is the ith element of cluster k , and dist (xi ,Ck ) is any
function that returns a non-negative symmetric distance between
two points. Also, let Mk, j be the distance between the centroids
of clusters k and j. The Davies-Bouldin index (DBI) defines the
similarity of two clusters as:

Rk, j =
Sk + Sj

Mk, j
(3)

Which is to say, two clusters are more similar if their points are
scattered and their centroids are nearby, and they are less similar if
they are densely packed and their centroids are distant. Then, the
DBI is simply the average of the maximum similarity between all
pairwise clusters. In other words:

score =
1
K

K∑
k=1

max (Rk, j )∀j ∈ K , k (4)

Where K is the set of all cluster centroids. For the DBI, lower
scores are better, as they indicate greater distance and less similar-
ity between clusters. Note that because the DBI is dependent on
a distance metric, it is not comparable between different sets of
embeddings, as we would have no way of normalizing for values
that encoders generate in their embedding spaces. Therefore, we
cannot say that one clustering model is superior to another strictly
from their DBI scores.

4.2 Cluster Selection
Using the DBI scores for quantitative evaluation, we are able to
search for values of Km that will yield well-separated clusters for
each model, m, independently. We begin by finding KLSTMDEC
and KLinearDEC for our LSTM DEC and Linear DEC models, re-
spectively, by searching for values between 2 and 10, fine-tuning
the LSTM and Linear DEC models with each value, and comput-
ing DBI scores for each model. Once we have found the values of
KLSTMDEC and KLinearDEC that yield the lowest DBI scores, we
save the LSTM DEC model trained on KLSTMDEC clusters, and the
Linear DEC model trained on KLinearDEC clusters.

We then use these trained models to generate the embeddings
that will be passed to the E-LSTM and E-Linear models. We again
try a range of different values for KE−LSTM and KE−Linear for the
E-LSTM and E-Linear methods, respectively, and ultimately save
the k-means model that yields the lowest DBI score.

We also use the DBI to evaluate hyperparameter settings. If the
lowest DBI score for a certain set of hyperparemeters is 2, it is likely
that the model has not learned anything particularly interesting or
insightful about our MAS data, as more than 2 roles are fulfilled
throughout a soccer or StarCraft game. Similarly, if the lowest DBI
score for set of hyperparameters is 10, it is likely that model has
overfit to different actions in the games, and is no longer capturing
interesting archetypal roles.

We restrict our search to few clusters, as we expect that there are
few archetypal roles in ourMAS data. Though our approach extends
easily to any arbitrary number of clusters with little additional
computational overhead, we note that higher numbers of clusters
end up closer to motif discovery or action discovery rather than
role discovery.

As noted above, the raw DBI is not comparable across different
sets of embeddings or models. We can, however, normalize the
scores for each model in order to concisely visualize the relative
DBI scores from different models for various values of K . Fig. 2
shows normalized plots of DBI scores for top performing models on
each dataset. The DBI scores are normalized with simple min-max
normalization for each model so that all values are between 0-1.
Given this information, we can see which models tend to underfit
or overfit the data, and which values of K are most common.

5 EXPERIMENTS
We evaluate our role discovery approaches on the soccer and Star-
Craft datasets detailed in Sec. 3, using the number of clusters for
each model resulting from the analysis above. We define the role of
an agent as a function of its behavior through time, as opposed to
the work of [31], where it is a function of topic modeling, or [20],
where it is a function of graphical structure or relations. As such,
our methods do not have an existing baseline for comparison. For
all evaluations, we report results of our ablation study using the RS,
RT, LSTM DEC5, Linear DEC6, E-LSTM, and E-Linear models. Most
parameter values were achieved by performing a hyperparameter
search for each model independently, though certain hyperparame-
ters were shared by all models. We used a batch size of 64 for all
experiments, and all models were trained with the Adam optimizer
with a learning rate of 0.001. Our soccer encoders were pretrained
for 64 epochs, while the StarCraft encoders were pretrained for 12
epochs, and all DEC models were fine-tuned until fewer than 0.1%
of samples changed labels between updates.

5.1 Soccer Experiments
The soccer dataset that we use is considerably smaller than the Star-
Craft dataset, and as such we can easily visualize the entire game,
as individual agents move throughout the field and change roles

5For both datasets, best performance was achieved with Z=8.
6The best performance was achieved with Z=16 for the soccer dataset, and Z=8 for
the StarCraft dataset.
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Figure 2: DBI scores for top performing models for soccer
data (Top) and StarCraft data (Bottom). Scores are normal-
ized between 0-1 for visual comparison.

depending on the context they are in. Visualization aids us in quali-
tatively making sense of the results from our different approaches,
and in naming the roles for human readability, while evaluating
which approaches have provided the most general abstraction of
different roles on the field. We use the soccer dataset as a testbed
for our approach to unsupervised role discovery, largely through
qualitative observation of the results. Additionally, we introduce a
quantitative metric of continuity, which is a measure of how stable
or consistent role labels are. If a model produces roles with low
continuity, it means that the agents are constantly flickering be-
tween different roles over time. This makes interpretation of the
data more challenging, and likely indicates that the model has fit
too closely to activities. We define continuity as:

chanдes =
I∑
i

T∑
t=1

1(Ki,t ! = Ki,t−1) (5)

continuity = 1 −
chanдes

|I | ∗ |T |
(6)

Where I is the set of all agents, and T is the set of all timesteps.
After running our different quantitative cluster metrics, we seek to
select a model that maximizes the continuity across all agents, with-
out selecting the minimum number of clusters (i.e. 2 in soccer). As
discussed above, the minimum number of clusters indicates underfit
for our particular datasets. The LSTM autoencoder provides the

best embeddings for discovering archetypal roles according to this
metric. As we can see in Fig. 3 the Linear DEC and E-Linear models
find roles with less continuity (56.83% and 69.29%, respectively),
and upon visualization the Linear DEC model in particular appears
to overfit to particular player positions or activities, as roles flicker
in response to small changes in context. The RS and RT models, on
the other hand, are too general, and simply identify which side of
the half-way line players are on (continuity of 87.29% and 88.58%,
respectively, but only 2 clusters each). These underfit roles do not
provide us with anything useful or interesting to say about the
behavior of the players, only about their location on the field. The
LSTM DEC and E-LSTM models each have higher average conti-
nuity (71% and 77.08%, respectively) than the two Linear models,
though they find comparable numbers of clusters.

Figure 3: Average continuity across all agents and number
of clusters discovered for each model

The difference between the success of our different approaches
becomes much clearer upon visualization of the roles on the game
data itself. The LSTM approaches discover the same four key roles,
which could be best described as: “Attacker”, “Defender”, and “De-
fensive Midfielder”, and “Midfielder”. The Linear DEC and E-Linear
approaches, on the other hand, discover seven and five different
roles, respectively. The roles these methods discovered can be dif-
ficult to distinguish from each other, as a player will often flicker
between different roles despite appearing to exhibit the same be-
havior. We attribute this to an overfitting of the models to different
contexts or actions, and a failure to capture general player roles.
The RS and RT methods each discover only two roles, which are
easily described as “in my half” and “in my opponent’s half”. In
situations where agents behave erratically, we observe that the
linear methods create new clusters or roles for erratic or unseen
behavior, while the LSTM methods will instead assign agents to the
nearest existing role if a behavioral pattern is not common enough
to warrant the creation of a new role.

It is interesting to note that there is some agreement between our
approaches on key roles. There is substantial overlap between the
roles that the LSTM and Linear approaches discover, for example,
and the key difference between the models is in the granularity of
the roles that are discovered. As we seek to discover behavioral
roles that are independent of small changes in context, the LSTM
models offer the best solution. For an example of the visualization
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Figure 4: A sample of our soccer game visualization, where roles are symbolized by different colors, and teams are represented
by different shapes. Roles from the LSTM (Top) are much more consistent than the Linear (Bottom) models, as is evident in
this example by looking at the five left-most squares in each frame.

we use to see which roles are discovered in the soccer dataset, refer
to Fig. 4.

5.2 StarCraft Experiments
Our StarCraft dataset is significantly larger than the soccer dataset
we use, and therefore affords more quantitative evaluation. We
use this data to evaluate how effective our roles are for predictive
models to infer the state of the game. We compare the performance
of three k-Nearest Neighbors classifiers trained on different datasets
for two different tasks. The three datasets we compare are:

Raw data: Raw game state data for all units, as in Sec. 3.2
Raw data + roles: As above, with each unit’s predicted role ap-

pended to the raw data
Role composition : A K-dimensional vector, where each element

represents what percent of the army is currently fulfilling role k .
For example, if an army contains 5 workers, 10 defenders, and 10
attackers, the vector would be [0.2, 0.4, 0.4]

We designed two tasks to measure the value of the roles discov-
ered by our models. First, if roles capture meaningful information
about the behavior and state of an agent, then we expect that they
will be useful in predicting the state of the overall system, i.e. who
will win the game. Thus, the first task is success prediction: given
information on both teams, the model is tasked with predicting
which team will win the game.

Second, we expect that meaningful roles will also be useful for
predicting ablated attributes of an individual agent. Thus, the sec-
ond task is attribute prediction: we ablate the “Distance From Home”
feature from the datasets above, and task the model with predicting
its value. We chose this feature because it is the most difficult to
predict using only the game state, and it produces the highest aver-
age mean squared error across all of our models. Note that for this
test, instead of role composition, which does not apply to single
units, we use only a single feature: the unit’s predicted role.

5.2.1 Success Prediction. For success prediction, we train and
evaluate our models using 10-fold cross validation at 10% incre-
ments of time throughout the game (which allows us to normalize

Figure 5: Accuracy for predicting the outcome of a game of
StarCraft using KNN on 3 different datasets. Role compo-
sitions are significantly (p < .001) stronger predictors than
raw game states. Role Composition is generated with the E-
LSTMmethod, while the RawData andRawData + Roles are
generated with the LSTM DEC method.

for varying game lengths). Note that for each data type, we report
the results of the best performing model, as follows: LSTM DEC
for raw, LSTM DEC for raw data + roles, and E-LSTM for role com-
position. Fig. 5 summarizes the results. We performed a repeated
measures ANOVA across the three datasets at each interval and a
Tukey’s post-hoc test. Our results show significant difference in
the predictive power of role composition over raw game states (p <
0.001), demonstrating the success of our approach in discovering
semantically meaningful roles.

5.2.2 Attribute Prediction. Comparison on mean squared error
for “Distance From Home” prediction reveals that the role data
alone is not sufficient for perfectly predicting unit position. This
result is to be expected, because the aim of our work is to capture
high level roles that may take place at various locations in space
(i.e. patrolling at different distances from the base). However, a one-
way ANOVA with a Tukey’s post-hoc shows that the LSTM models
again significantly outperform all other models (p < 0.001) using
only a single role feature. This result demonstrates that the LSTM
models have identified roles that are fulfilled in different contexts
throughout the game, as different roles are fulfilled in different
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contexts and positions around the map in StarCraft. A comparison
across the top performing model in each category can be seen in
Fig. 6

Figure 6: Predictive accuracy for eachmodel using only roles
to estimate a unit’s distance from home. LSTM models sig-
nificantly (p < 0.001) outperform all other models

When examining the raw, raw data + roles, and role datasets,
we again see that roles provide semantically meaningful data for
predictive models. A one-way ANOVA and Tukey’s post-hoc re-
veals that the raw data + roles significantly outperforms all other
datasets (p < 0.001) for predicting the ablated feature. This result
demonstrates that, when combined with game state information,
roles can be powerful signals to aid in understanding what an agent
is doing at any given time. A comparison across datasets can be
seen in Fig. 7.

Figure 7: Predictive accuracy for each dataset estimating a
unit’s withheld attribute

6 DISCUSSION
Our results show that it is possible to identify behavior-based roles
in different MAS from observations of unlabeled temporal data,

and that these roles can be used to make sense of the state of the
system. Our soccer experiments allow us to qualitatively confirm
that our role discovery approach finds meaningful and interesting
roles, while also confirming that deep LSTM-based methods are
superior to raw k-means or deep linear-based methods for temporal
analysis. Likewise, our StarCraft results validate that LSTM-based
approaches provide the most useful roles for predicting game state
information.

Interestingly, we observe that, while roles generally provide
useful information in conjunction with raw data for predicting
the outcome of a game of StarCraft, the role composition on its
own is often a better predictor than the game state in its entirety
(Fig. 5). We speculate that poor performance from the raw data
is explained by the game state containing too much redundant
or noisy information, preventing predictive models from clearly
identifying a signal with only 200 games of data. Role composition
alone, however, is able to concisely convey all of that information
while removing much of the noise.

Finally, we find that in both datasets, classical techniques fail to
find useful or interesting behavioral roles. Static k-means models
cannot meaningfully find behaviors without seeing a full window
of observation, and the temporal k-means models cannot handle
all of the noise or interactions between static observations. In the
case of the StarCraft data, both RS and RT identify whether or
not units are alive or dead, and in soccer data they identify which
half of the field players are in. Interestingly, we find that running
k-means over DEC embeddings often yields results comparable to
the DEC networks themselves. Comparable performance between
E-LSTM / E-Linear and DEC indicates that, while the unsupervised
loss function is essential to learning a separable embedding of the
input data, the final clustering layer itself is not much better than
simply performing k-means clustering on the embeddings.

7 CONCLUSION AND FUTUREWORK
We have presented a new definition for roles based on behavior and
context rather than network connectivity or graphical structure,
which can be easily applied to MAS to improve interpretability or
semantic structure for predictive models.We have compared several
different methods for identifying the higher level role information
throughout temporal observations of soccer players and StarCraft
units, and found that the LSTM DEC and E-LSTM methods are the
most useful models for discovering roles that aid in interpretation
of game state.

Future work includes taking advantage of this state abstraction
for simplification of game state prediction in reinforcement learning,
exploring other approaches for integrating behavior-based roles
into MAS analysis and interpretation, and exploring role discovery
on MAS without hand-engineered features.
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