
The Matrix: An Agent-Based Modeling Framework
for Data Intensive Simulations

Parantapa Bhattacharya
University of Virginia
parantapa@virginia.edu

Saliya Ekanayake
Lawrence Berkeley National Laboratory

esaliya@lbl.gov

Chris J. Kuhlman
University of Virginia
cjk8gx@virginia.edu

Christian Lebiere
Carnegie Mellon University

cl@cmu.edu

Don Morrison
Carnegie Mellon University

dfm2@cmu.edu

Samarth Swarup
University of Virginia
swarup@virginia.edu

Mandy L. Wilson
University of Virginia
alw4ey@virginia.edu

Mark G. Orr
University of Virginia
mo6xj@virginia.edu

ABSTRACT

Human decision-making is influenced by social, psychological, neu-
rological, emotional, normative, and learning factors, as well as
individual traits like age and education level. Social/cognitive com-
putational models that incorporate these factors are increasingly
used to study how humans make decisions. A result is that agent
models, within agent-based modeling (ABM), are becoming more
heavyweight, i.e., are more computationally demanding, making
scalability and at-scale simulations all the more difficult to achieve.
To address these challenges, we have developed an ABM simula-
tion framework that addresses data-intensive simulation at-scale.
We describe system requirements and design, and demonstrate at-
scale simulation by modeling 3 million users (each as an individual
agent), 13 million repositories, and 239 million user-repository in-
teractions on GitHub. Simulations predict user interactions with
GitHub repositories, which, to our knowledge, are the first simu-
lations of this kind. Our simulations demonstrate a three-order of
magnitude increase in the number of cognitive agents simultane-
ously interacting.

KEYWORDS

agent-based simulation; simulation framework; distributed simula-
tion

ACM Reference Format:

Parantapa Bhattacharya, Saliya Ekanayake, Chris J. Kuhlman, Christian
Lebiere, DonMorrison, Samarth Swarup, Mandy L. Wilson, and Mark G. Orr.
2019. The Matrix: An Agent-Based Modeling Framework for Data Intensive
Simulations. In Proc. of the 18th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13ś17,

2019, IFAAMAS, 9 pages.

The research is based uponwork supported by the Defense Advanced Research Projects
Agency (DARPA), via the Air Force Research Laboratory (AFRL). The views and con-
clusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or im-
plied, of DARPA, the AFRL or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon.
Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13ś17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION

1.1 Background, Motivation, and Novelty

Background and motivation. Human decision-making is impor-
tant in virtually all aspects of life, including forming habits; school,
career, job, and hobby choices; and marriage decisions [6, 21, 40].
Moreover, social, psychological, neurological, emotional, normative,
and learning factors, as well as age and education level, influence
these decision-making processes. Social/cognitive computational
models incorporating these factors are increasingly used to study
how humans make decisions [7, 27, 36, 40, 53]. A result is that agent
models, within agent-based modeling (ABM), have become more
computationally demanding.

With the continuing pervasive use of social media, it is important
to understand decision-making in these environments. Examples in-
clude instigation and perpetuation of social unrest [49]1, economic
hardships within a country [19], and terrorism [25]. Yet, relatively
little work exists that uses social and cognitive computational mod-
els to understand decision-making in large online environments
at scale. Our approach is to develop an agent-based modeling and
simulation (ABMS) system that incorporates social and cognitive
agents to study online social platforms at scale.
Context and goals. One of our primary goals is to build, run,
and evaluate cognitive and social agents that model online human
decision-making processes, and to run simulations at scale where
millions of these agents interact with each other and their environ-
ment. A second primary goal is to determine the trade-offs between
fidelity of models, quality of results, and scalability.

We adopt an agent-based modeling approach for several rea-
sons. A disaggregated representation of a population enables finer-
grained inputs (e.g., heterogeneous inputs and agents) and outputs
(e.g., evaluation of individual entities or sub-groups based on par-
ticular traits or interactions). ABMs allow finer-grained parametric
and sensitivity studies to explore the effects of inputs on results.
ABMs are also generative, and can thus provide more insights
into the modeled system [16]. With detailed interaction structures
among agents, establishing causality for particular behaviors may
be easier [14]. Finally, the detailed representations afforded by ABM
makes natural the process of exploring counterfactuals.

1This reference is for an entire special issue of the journal.

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1635

Table 1: Different types of agent-based models (ABMs) run

within the Matrix simulation system.

Name Model Type Prog. Lang.

Freq-Stat Frequentist statistical model Python
Soc-Th Social structure theory model Python
CM-ANN Artificial neural network model C++
CM-Bayes Bayesian cognitive theory model R
CM-ACTR ACT-R cognitive theory model Common Lisp

Our approach separates model-building from simulation. Specif-
ically, scientists and modelers design and build decision-making
software agents, which are then managed by a simulation infras-
tructure responsible for all other aspects of the simulation (e.g.,
flow control, data management, distributed communications), but
not agent behavior. In this way, many types of agent models can
be run in a single simulation environment. The focus of our paper is
this agent-model agnostic simulation framework, which we call the

Matrix. 2 Our exemplar Ð the first of several studies Ð is human
decision-making on GitHub. Modeling GitHub presents several
unique challenges, but the Matrix distributed simulation platform
is far more general and can easily be used to model other social
media platforms such as Twitter, Facebook, and Reddit.
Novelty of work. There are several novel aspects of this work.
First, we have produced a distributed framework for executing
simulations involving heavyweight cognitive and social agents.
Second, we demonstrate simulations with the Matrix that have
three orders of magnitude more agents than the previous largest
cognitive agent simulations. Third, the GitHub data set is large,
encompassing 32 months of data, spanning 10 types of events, and
containing hundreds of millions of users, repositories, and user-
repository interactions. This is 2ś5 orders of magnitude greater in
numbers of users and repositories than any other works studying
GitHub [29, 48, 51, 54]. Fourth, the agents we have run within the
Matrix span agent models backed by artificial neural networks,
cognitive reasoning frameworks (ACT-R), Bayesian models, social
theory models based on communities, and simple statistical models
that seek to replicate selected distributions found in the experimen-
tal data. This demonstrates the Matrix’s flexibility in supporting
many types of agents while itself being agent-model agnostic. See
Table 1 for a list of agent models we have supported.

1.2 Requirements For Our Simulation System

The problem description above leads to the following requirements
for the simulation platform.

(1) Ability to quickly store, update, and query large amounts (hun-
dreds of gigabytes) of overall system state data consisting of
both active agent states and passive object states that the
agents require to make decisions.

(2) Ability to run large scale distributed simulations without ac-
cess to Remote Direct Memory Access (RDMA) backed net-
works such as commodity (multicore) clusters, and popular

2The source code of the Matrix framework is available at following URL https://github.
com/NSSAC/socioneticus-matrix

cloud computing platforms [39] such as Amazon EC2, Google
Compute Cloud, and Microsoft Azure [5, 52].

(3) Ability for agents to be written in different programming lan-
guages, including, but not limited to, Python, R, Lisp, C, and
C++.

(4) Ability to use Compute Unified Device Architecture (CUDA)
based GPU units, popular deep neural network libraries (such
as TensorFlow3, PyTorch4, and LENS [42]), and cognitive sys-
tem libraries (like ACT-R [47]) for writing agent models.

(5) Ability to run heterogeneous simulations incorporating differ-
ent classes of agents in a single simulation.

(6) Ability to rapidly incorporate new data sources and prototype
new agent models.

In the following sections, we describe how we meet these re-
quirements. Related Work addresses how these requirements led
us away from existing solutions.

1.3 Contributions

1. Dynamical systems-based formal simulation model. We
use graph dynamical systems [31], a discrete dynamical systems
formulation, to represent GitHub system dynamics. It explicitly rep-
resents active agents in the system (GitHub users), passive objects
(e.g., GitHub repositories, pull requests, and issues), and the Matrix
infrastructure. This formalism makes clear the role of the Matrix
in performing control flow, data transmission, and data manage-
ment. This allows us to reason about the system from an abstract
perspective, and to separate dynamic interactions within GitHub
from software design and implementation.
2. Design and development of the Matrix-distributed simu-

lation framework. The Matrix conforms to a bulk synchronous
parallel model [50]. The principal components are the controller
that manages control flow within a Matrix instance, state store that
provides data to agents in formats amenable to their needs, reducing
their burden of querying the system state as they compute behav-
iors, and data distribution system to pass messages between the
distributed processes. These elements, design choices, and system
extensibility are discussed, and APIs are provided.
3. Descriptions of agents run in theMatrix.Agents run as stan-
dalone processes and communicate with the Matrix through well-
defined APIs. Several different classes of models have been built
and integrated into the Matrix, as described in Table 1. We provide
ABM APIs and describe agent construction.
4. Performance evaluation of the implemented system. To
evaluate the Matrix platform, we provide scaling studies using the
ACT-R based cognitive theory inspired model. Our evaluations
show that the Matrix platform can scale to millions of agents, a
three-order of magnitude improvement in the state of the art for
this class of cognitive models.

1.4 Exemplar Problem Description of GitHub

The GitHub system is represented in Figure 1. The system we study
has 9 million users, 44 million repositories (repos), and 797 million
user-repo interactions (events) over a 32-month window that were

3https://www.tensorflow.org/
4https://pytorch.org/

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1636

Event Trace

User Repo Type Time

user3 repo0 PushEvent 2018-02-01T00:00:00Z

user1 repo1 CreateEvent 2018-02-01T00:01:22Z

user2 repo1 IssueEvent 2018-02-01T00:03:08Z

user1 repo1 DeleteEvent 2018-02-01T00:10:45Z

useri repoj IssueEvent 2018-02-28T11:57:39Z

userk repol PushEvent 2018-02-03T11:59:50Z

GitHub Environment

u2

u1
u0

u3

u4

u5

r0

r1

r1.1

r2

Figure 1: Schematic of the GitHub system. Edges between

users and repos represent event tuples (interactions) and

other data (e.g., aggregated data) being transmitted, while

the event trace contains all event tuples.

collected by Leidos5. Users interact directly with repos by initiating
events on them. For example, a user may fork a repo (ForkEvent) to
make personal modifications to an existing project, and, after the
modifications are complete, the same user may request that her code
be incorporated into the main-branch code base (PullRequestEvent).
Each event type changes the state of GitHub by changing the state
of a repo, and may change the internal state of user agents.

The fundamental unit of information is the event tuple, et . It is a
4-tuple et = (u, r , e, t) where u is the user initiating the event, r is
the repo on which the event is performed, e is the event type, and t
is the date and time of the event. This is illustrated in Figure 1.

Cognitive modelers and social theorists used these event tuples,
along with user and repo profile information, to develop agent-
based models (ABMs). These models were, in turn, submitted to
the Matrix simulation engine in order to simulate decision-making
over model-defined time intervals.

Finally, the capabilities of the Matrix go well beyond GitHub;
however, this problem provides a representative example of a con-
crete use of the Matrix.

Paper organization. The remainder of the paper is organized as
follows: Section 2 contains related work. The formal mathematical
model on which the Matrix is based is presented in Section 3. The
Matrix is described in Section 4, and the state store and agents are
presented in Section 5. Computational experiments are provided
in Section 6. In the last sections, we go over the limitations of our
system and conclude.

2 RELATEDWORK

Agent-based simulation (ABS) platforms.ThemanyABS frame-
works include Repast and Repast HPC [13], FLAME and FLAME
GPU [12] [24],MIRAGE [37], Swarm [30],Mason [28], AnyLogic [20],
and NetLogo (e.g., [13, 24]). Some of these emphasize usability
(e.g., through graphics capabilities); others emphasize performance
and/or simulation features. Systems use discrete time, event-driven,
or both paradigms for controlling agent execution. These and other
systems are described in several surveys (e.g, [26]). Books on ABM
cover details of simulation systems design and implementation [17]

5https://www.leidos.com/

and applications [18]. Most simulators are produced by writing
custom software for agent behavior to meet a particular need; com-
piling the code; and linking the agent code to the appropriate frame-
work (e.g., from the list of frameworks mentioned above).

The Matrix differs from this approach in that one or more agents,
at the developer’s discretion, execute as a separate process (and
there can be any number of such processes), thus providing looser
coupling between agents and simulation infrastructure. This means,
for example, that agents can be written in any programming lan-
guage (PL), and no PL bindings are required. Agents conform to a
small application programming interface (API) to exchange mes-
sages with the Matrix infrastructure. Also, the Matrix specifically
accommodates agents that require large amounts of data (as in
the case of GitHub in our exemplar study) through a unique, flex-
ible, and customizable state store component that is described in
Section 5. To alleviate communication congestion, state stores are
replicated across compute nodes (e.g., one instance per hardware
node of a cluster). The Matrix, like Repast HPC, can implement
interactions based on network representations of interacting agents
(i.e., graph nodes, such as Twitter followers/followees) and spatial
representation and movement of agents.
Social and social media modeling. There are several surveys
about ABM in social research (e.g., [10]). In particular, [9] cites
works over a broad range of social topics that include reciprocity,
reputation, punishment, trust, and conventions, among many oth-
ers. ABM has been used, for example, in the study of segrega-
tion [43], and is widely used to study Twitter [44] and Facebook [33]
networks. Equally important, there are many models of social me-
dia behavior that can be converted to ABMs; e.g., [19, 32, 46]. In
contrast, we found no GitHub-based social modeling works, making
unique our particular application of at-scale interacting social and
cognitive agents.
Cognitive modeling. Fourteen human decision-making architec-
tures are explored across five dimensions (cognitive, affective, social,
normative, learning) in [7]. They start with rule-based systems, and
proceed through belief-desire-intention (BDI), normative, cognitive,
psychological, and neurological architectures. They also overview
dozens of modeling frameworks that space precludes us from ad-
dressing here. Tradeoffs in model fidelity versus computational
efficiency are discussed in [1]; we take this approach when using a
streamlined cognitive agent modeling environment, ACT-UP [41],
rather than the heavier-weight ACT-R model. We also construct
agents with LENS [42], an artificial neural network (ANN) soft-
ware library, that has been used in a number of cognitive studies
(e.g., [38]). ABM relating to social psychology appears in [45]. Be-
yond software, there are vast amounts of literature on conceptual
models of cognition that have greatly influenced computational
modeling (e.g., [35, 36]). The process of inferring properties of cog-
nitive models from data is addressed in [22]. We found no works
on cognitive modeling of users on GitHub.
Numbers of agents in at-scale cognitive simulations. In sim-
ulations of a housing market, [15] uses 203 agents. A hybrid sim-
ulation is reported in [11], where there are between 500 to 2500
light-weight agents and eight cognitive agents. Simulations of aca-
demic publishing [34] involve 3000-4000 cognitive agents, but at
any given time in a simulation, at most ten agents are active. Cogni-
tive modeling of pedestrian movements used up to 447 agents [23].

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1637

GitHub

…

repositories (repos)

users

Event initiated by

user that changes

the state of a

repo.

State change of

repo that user

considers in next

events to generate.

…Vu

Vr

et

Figure 2: Conceptual view of GitHub consistent with the

Graph Dynamical System (GDS) formal model. The user Vu

and repo V r node sets are shown, as is an illustrative event

tuple et .

One thousand cognitive agents were simulated in [41]. By com-
parison, in this work, we simultaneously simulate up to 3 million
agents. This includes the entire corpus of data mentioned above,
fullfilling our goals of data-intensive computations at scale.

3 MODELS

This section is divided into two parts. First, a mathematical model
called graph dynamical systems (GDSs) is introduced. The GDS
formalism is general, and can simulate a Turing machine for certain
complexity classes [8]. We also comment on specializations of this
dynamical systems description for the GitHub system (space pre-
vents a full treatment). Mathematical models such as GDS enable
reasoning about dynamical systems (and simulations) while avoid-
ing software implementation details. For example, unlike Facebook
or Twitter, where models use a homogeneous population of users, it
is more natural in the GitHub system to use two sets of nodesÐone
for users and one for reposÐand sequence their dynamics accord-
ingly. Block sequential loading within GDS captures precisely this
needed behavior; it is needed both in the model and in the software
implementation. Second, selected elements of the GDS are reformu-
lated for the Software System Implementation Model (SSIM). Note
that this transformation from a purely mathematical model to an
SSIM is often done to achieve computational efficiencies.

3.1 Graph Dynamical System Model

A graph dynamical system [31] S is a discrete dynamical system
defined by S(G,K, F ,W). Here,G(V , E) is a network with vertex set
V and edge set E, K is the set of vertex states, F is a sequence of
vertex or local functions (one per vertex), andW is an update scheme

that describes the execution order or sequencing of the vertex
functions. GitHub can be represented as a graph, as in Figure 2,
where V = Vu ∪V r and edges E denote channels for events.

Let vi ∈ V be a vertex in G, xi ∈ K be its state, and n[vi]

be the sequence of vertices in the 1-neighborhood of vi . The re-
stricted state of vi is the sequence of states of its 1-neighborhood
vertices, x[vi] = (xn[vi](1), xn[vi](1), . . . , xn[vi](di+1)), n[vi](j) de-
notes the j’th vertex of the 1-neighborhood and di is the degree
of vi . The system state is the sequence of all vertex states, denoted
x = (x1, x2, . . . , xn) ∈ K

n , where n = |V |.
The dynamics of the system are governed by F = (fi)

n
i=1, the

sequence of vertex functions, where fi is the vertex function for vi ,

andW , the update scheme, respectively. Function fi : Kdi+1 → K

maps the current state of vi at time t into the next state at time
(t + 1), i.e.,

xi (t + 1) = fi (x[vi](t)) . (1)

A vertex function for a user vi ∈ Vu will produce et ’s, where et is
part of the vertex state xi .

In this work, the block-sequential update scheme is used, meaning
that vertices are grouped into a sequence ofq blocks (B1,B2, . . . ,Bq)
and Equation (1) executes as

(FBk (x(t + 1)))i =

{

fi (x[vi](t)), if vi ∈ Bk
xi (t), otherwise .

(2)

For GitHub, B1 = Vu , the set of users, and B2 = V r , the set of repos.
Over all blocks, Equation (2) captures the system dynamics

x(t + 1) = F(x(t)) , (3)

where F : Kn → Kn is defined as F = FBq ◦ FBq−1 ◦ . . . ◦ FB1 ,
with ◦ denoting function composition. That is, at each time t , all
vertex functions in the first block execute in parallel, then all vertex
functions in the second block execute in parallel (using the updated
output from all preceding blocks), and so on, until all blocks execute.
Further details are found in [2, 31].

3.2 Software System Implementation Model

The Matrix is the infrastructure of the SSIM. The combination
of the Matrix and ABMs produces an agent-based modeling and
simulation (ABMS) system. This is discussed in Sections 4 and 5.

Here, we provide an implementation model that preserves the
network representation of GitHub and the block-sequential update
scheme of the GDS, but regroups the vertex functions and vertex
states. It also provides a higher level representation of the vertex
functions that assists in the software design. For example, note that
in Section 3.1, the same event tuples et ∈ Et are part of both user
vertex states Ku and repo vertex states Kr . While perfectly valid
and useful in reasoning with a mathematical model, it is of course
often inefficient to store information redundantly.

Also, only state updates are passed within a distributed system
to avoid transmitting redundant information because system state
updates are typically much smaller than the entire system state at
each time step t of a simulation. Thus, in software, a distinction is
made between a system state x ∈ S and an update of a system state
xu ∈ U . Note that the set of all system states S equals Kn and the
set of all system state updates U equals Kn .

The Matrix provides a framework for writing discrete time sim-
ulations. A stochastic discrete time simulation can be modeled as
a stochastic function дsim : S → S , such that given a system state
at time t , x(t) ∈ S , x(t) is transformed to x(t + 1) = дsim (x(t)), the
next system state. Then a run of the simulation can be thought of
as successive application of the simulation function дsim starting
with the initial system state x(0), analogous to Equation (3).

To utilize distributed computing hardware to speed up the simu-
lation, first, the monolithic function дsim is decomposed into com-
ponent functions that can be computed in parallel. In our model,
we first decompose дsim into two functions дact : S → U and
дr ed : S ×U → S . Conceptually, дact is responsible for computing
the state updates xu (t + 1) that need to be applied to the current

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1638

RabbitMQ BrokerController	Process

State	Store	

Process

State	Store	Object

State	Store	

Process
State	Store	

Process

Agent	

Process
Agent	

Process
Agent	

Process

0

n

Controller	Process

State	Store	Object

State	Store	

Process

Agent	

Process
Agent	

Process
Agent	

Process

Controller	Process

State	Store	Object

State	Store	

Process

Agent	

Process
Agent	

Process
Agent	

Process

Figure 3: Matrix simulation framework architecture, denot-

ing the controller, message broker, state store, and agents.

state x(t), and дr ed is responsible for applying those updates to the
current state to produce x(t + 1). Using дact and дr ed , дsim can be
written as

x(t + 1) = дsim (x(t)) = дr ed (x(t),дact (x(t))) . (4)

The similarity between Equations (4) and (3) is obvious.
In an agent based simulation, дact is responsible for computing

all the necessary state updates that need to be made on behalf of all
the agents present in the system. If we, however, assume that within
a given time t , the agents can compute their actions independently,
then the function дact can be further decomposed as

дact (x(t)) =
⋃

vj ∈V

д
vj
act (x(t)) (5)

Here, V is the set of agents in the system, and д
vj
act is assumed to

compute updates only on behalf of agent vj . Note that the indepen-
dence here must respect the sequencing of the user state updates
with the repository state updates, as embodied in Equation (2).

In the decomposition of the simulation function дsim described
above, the function дact produces an unordered set of updates for
the system state si . This requires some consideration in developing
дr ed , because if we were to naively apply the unordered updates
to the system state, it can introduce unwanted system-introduced
non-determinism.

This problem, however, can be easily remedied if there exists
a total ordering among all the elements of update set U , which is
often the case in practice. In such cases дr ed can be decomposed as

дr ed (x(t), x
u∗) = д̂r ed (si , (x

u1
, xu2 , . . . , xuk)) (6)

Here, (xu1 , xu2 , . . . , xuk) is the ordered version of the unordered
set of messages xu

∗
which is the output of дact .

4 MATRIX DESIGN AND IMPLEMENTATION

In this section, we describe the overall design and implementation
of the Matrix ABM system.

The Matrix ABM System builds on the decomposition of the
simulation computation as described in the previous section. To
implement agent-based simulations using the Matrix, one needs to
implement two programs: the agent program (д

aj
act) and the state

store program (д̂r ed).

iteration	<	num_time_steps

Agent	

Synchronization	

Phase

Update	

Computation	

Phase

Data	Sharing	

Phase

Simulation	End State	Store	

Flush	Phase

Controller	

Synchronization	

Phase

Agents	compute	updates;	

the	controller	begins	to	

share	output	and	post	to	

the	state	store.

Agents	perform	

initializing	steps	before	

the	simulation	begins.

Agent	computations	end	

for	current	time	step.	

Controller	continues	to	

share	output	and	post	to	

the	state	store.

Controller	continues	to	

post	to	the	state	store	

as	it	waits	for	other	

controllers	to	finish.	

Controller	finishes	

posting	to	the	state	

store,	and	flushes	the	

stores	to	output	

repositories.

When	the	last	round	of	

event	tuples	is	written,	

the	controllers	cleanly	

exit.

Figure 4: Steps in the simulation process of the Matrix.

Figure 3 shows the overview of the Matrix platform. Every com-
pute node/machine in the simulation cluster runs the Matrix con-
troller process. Also present on every compute node is the state
store object which contains the complete current state of the simula-
tion. Agent programs written to work within the Matrix ecosystem
are designed as individual programs; an agent process is an instan-
tiation of the agent program and computes updates on behalf of the
agents it is responsible for. The computed updates are then passed
on to the locally available controller by the agent process, which is
responsible for sharing the updates with the controller processes
running on the other compute nodes. The computation model of
the Matrix platform conforms to a BSP model [50], with control
and communications being the responsibility of a controller, one
instance residing on each hardware node.

Figure 4 shows the states of operation that the Matrix controller
process goes through. When the controller process receives updates
it passes them on to the local state store process. The state store
process keeps track of the updates it receives, maintaining them
in a consistently sorted order. At the end of each time step, the
controllers on all the compute nodes signal their respective state
store processes to apply the updates to their local state store objects
so the agent processes in the next time step can use the newly
simulated data.

For our GitHub simulations, the state store objects are deployed
as SQLite3 database files stored either on SSD-backed filesystems or
in memory using the memory-backed filesystem (łtmpfsž on Linux-
based operating systems). Furthermore, the controller processes
communicate with each other using an intermediate RabbitMQ
message broker system. The controller processes are implemented
in Python 3 and utilize łasynciož, which is Python 3’s native imple-
mentation of green threads, for handling large numbers of network
connections Ð TCP connections from the agent processes and state
store processes, and AMQP connections with the RabbitMQ mes-
sage broker. The technologies required to interface with the Matrix
ABM system are JSON and TCP/IP; these were chosen because of
their relatively low overhead, and because libraries for using JSON
and TCP/IP are readily available across a large range of program-
ming languages.

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1639

The agents in the Matrix ABM system communicate with the
controller process via remote procedure call (RPC) methods ex-
posed by the controller that rely on JSON RPC over TCP/IP using
the loopback interface. The two main RPC methods are CanWeSt-

artYet and RegisterUpdates. All the RPC methods exposed by
the Matrix controller are synchronous and blocking; this is done to
simplify the logic of writing agents and state stores.

An agent process signals its readiness to process agents and
produce updates on their behalf by calling the RPC method Can-

WeStartYet from its local controller. This method call blocks until
all of the agent processes on all of the compute nodes are ready,
and all of the state store processes have updated their state store ob-
jects with updates from the previous time step. Once the call to the
CanWeStartYet method returns, the agent process then iterates
over the agents it is responsible for, and computes updates. When
the agent process is finished computing updates for a given agent,
it hands the updates to the controller using the RegisterUpdates
RPC call.

In the current Matrix ABM system, each agent process is ex-
pected to be running on its own CPU core. Thus, it is a separate
task to distribute the agents operating inside the simulation among
the available agent processes. Note that, due to the design of the
simulation framework, it does not matter in which compute node
the computation of the given agent process takes place, as all the
information required to generate updates on behalf of the given
agent is present in the system store object, which is replicated on
every compute node. The Matrix ABM system does not enforce
any particular method for distributing agents among the agent pro-
cesses; they may either be distributed statically at the beginning of
the simulation or dynamically via an agent distribution mechanism.

To receive updates from the controller, the state store process
calls the exposed RPC method GetUpdates over TCP/IP using
the loopback device. This is a blocking call which either returns a
set of one or more updates, or an instruction for applying cached
updates to the state store object. If GetUpdates returns a set of
updates, the state store program is expected to update a cache of
updates with the newly obtained ones; this can happen multiple
times over the course of a time step. At the end of each time step,
GetUpdates will return the "apply update" signal, triggering the
state store process to push updates from its cache to the state store
object in a consistent order.

One of the requirements for our ABM system was that it be able
to run on commodity clusters, as opposed to HPC clusters backed
by RDMA-based high throughput and low latency networks such
as InfiniBand and Omni-Path; this is why we chose the more robust
message brokering system RabbitMQ over MPI. The abstraction
used by the Matrix system, however, allows us to easily swap out
the backend technologies for an alternative inter-node commu-
nication technology without modifying any agent or state store
code. Our future plans include creation of a version of the Matrix
ABM platform that uses MPI instead of RabbitMQ for inter-node
communication on HPC platforms.
Evolution of time within Matrix simulations: To evolve time
in simulations, we use a combined discrete time and discrete event
approach which we refer to as a hybrid approach. In particular, we
use discrete time steps (specified a priori) and synchronize agent
states at time step boundaries per the BSP model. However, within

Algorithm 1 Agent process logic

procedure AgentProcess(I ,C, S)
while i ← CanWeStartYet(I ,C) do

while aj ← GetNextAgent(I ,C) do
uj ,i ← ComputeAgentUpdates(aj , S)
RegisterUpdates(uj ,i ,C)

a time step, agents can generate any number of event tuples (and
internal state updates) at any time. The assumption of this modeling
approach is that state updates that take place within a time step are
independent among agents. Given the latest time tsync at which
synchronization of time occurred, each agent can use all (event)
information at times t ≤ tcurr . Thus, this time-stepping approach
is a conservative scheduling approach, i.e., it will never need to
back-track in time as is the case with optimistic scheduling methods.

In our work, this is advantageous because each model has dif-
ferent requirements for the time steps. For example, a cognitive
model may prefer small discrete times (e.g., one-hour increments)
to minimize the time over which the independence assumption
holds. However, a statistical model may produce better results over
a larger time step where stochasticity has a longer window in which
to operate. These trade-offs are still being evaluated, but the Matrix
is adaptable to these needs.

5 AGENTS AND STATE STORES

In this section, we describe the process of writing agent and state
store programs that can work together with the Matrix.

5.1 Agent processes in the Matrix

Algorithm 1 shows the overall workings of a generic agent process
logic. In general, an agent process is instantiated per available cpu
core on every available node on the cluster. An agent process, on
instantiation, is passed three arguments: its own agent process id I ,
a connection to the local Matrix controller process C , and a handle
to the local system state S . The agent process then runs a two-level
nested loop. The outer loop runs once per round (i.e., time step)
of the simulation, and begins with the RPC call CanWeStartYet.
This method returns the current round i during the simulation,
and Null when the simulation is over. When the agent receives a
Null response fromCanWeStartYet, the outer loop is terminated,
ending the agent process.

Within each iteration of the inner loop, the agent process fetches
an agent aj using the RPC call GetNextAgent and produces
updates uj ,i on its behalf, using ComputeAgentUpdates. Com-

puteAgentUpdates implements д
aj
act (Eq. 5), encapsulates the sim-

ulation logic, and varies across different simulations. Once the
updates uj ,i have been computed, the agent process hands it over
to the Matrix controller using the RegisterUpdates RPC call. The
RPC call GetNextAgent returns Null when all agents have been
distributed to agent processes for computing updates. On receiving
Null response from GetNextAgent the inner loop terminates,
thus ending the current round for the current agent process.

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1640

Algorithm 2 State store process logic

procedure StateStoreProcess(C, S)
U ← ∅

loop

u ← GetUpdates(C)
if u = SIMEND then

break

else if u = FLUSH then

ApplyUpdates(S,U); U ← ∅

else

InsertStored(U ,u)

5.2 State store processes in the Matrix

Algorithm 2 gives a high level overview of the procedure followed
by a generic state store process. Every compute node runs a single
instantiation of the state store process. On instantiation, the state
store process is passed two arguments: a connection to the local
Matrix controller process C , and a handle to the local system state
S . The state store process begins by initializing its cache for storing
updates,U . The state store process then runs a single loop, starting
with the RPC call GetUpdates. This method has three possible
return values: SIMEND, FLUSH, or a list of updates. On receiving a
list of updates, the state store process inserts them into its cache
of update messages U , while maintaining the sorted order of the
updates in U . The GetUpdates method returns FLUSH at the end
every simulation round; upon receipt of the FLUSH message, the
state store process is expected to use the ApplyUpdates method to
update the state store object S with all of the updates in its cache.
This is followed by reinitialization of an empty cache. ApplyUp-
dates is the method that implements д̂r ed (Eq. 6) and encapsulates
the logic for maintaining the state store object, and varies in tandem
with the instantiation of ComputeAgentUpdates which imple-
ments д

aj
act (Eq. 5). The GetUpdates method returns SIMEND at

the end of the simulation, at which point the main loop of the state
store process terminates.

6 BENCHMARK APPLICATION AND
EXPERIMENTS

We refer to Table 1 for a listing of all the models that have been
implemented and run in the Matrix. Here, we focus on one of these
models to illustrate the scalability of the Matrix ABMS platform.

6.1 CM-ACTR: An ACT-R model for
Simulating GitHub System

The ACT-R based cognitive model (CM-ACTR) makes use of the
ACT-R cognitive architecture [3], a high-fidelity cognitive architec-
ture that has been used to develop hundreds of human behavior
models from simple cognitive psychology experiments to complex
task environments6. ACT-R models can reproduce every aspect of
human behavior from sub-second response times, all types of errors
and biases, motor actions and eye movements, and even patterns
of neural activation.

6see the ACT-R web site at http://act-r.psy.cmu.edu/ for models and publications

In order to scale to orders of magnitude more agents and longer
time scales than typical ACT-R models, our approach follows the ac-
countable modeling principle [41], which states that models should
focus the use of cognitivemechanisms on key aspects of the task and
parameterize less important parts of the task. The CM-ACTR model
leverages the long-termmemory learning and retrieval mechanisms,
specifically the statistical activation process [4] and its components
such as base-level learning (to capture the power laws of decay
and practice), partial matching (to generalize across situations) and
blending (to generate aggregate decisions).

A preprocessing stage decomposes the user population into clus-
ters of about 1,000 users. Past events (or a subset of the more recent
ones) performed by those users are loaded intomemory. To generate
new events, the model generates from memory events composed
of a user, repo, type and time interval, matched sequentially in
increasing order of specificity. Those memory retrievals reflect past
event distributions and generalize across similarities between users,
reflecting their past action patterns. The computational load gener-
ated by the model is approximately linearly proportional to both
the number of past events represented in memory and the number
of future events generated.

6.2 Scaling study using CM-ACTR model

To analyze the scalability of the Matrix platform, we used the CM-
ACTR model, and ran the same simulation task using a varying
number of compute cores. For this experiment, we chose four dif-
ferent population sizes: 300 thousand users, 1.2 million users, 2.1
million users, and 3 million users. The CM-ACTR model was used
to simulate events produced by these users for a period of two
weeks. The compute nodes used for the simulations had 32 core
dual processor configuration, with each processor being a 16 core
Haswell-EP E5-2698 v3 2.30GHz processor. Each node had 128 GB
of RAM. The state store objects were implemented as SQLite3 files
and were kept in memory using on a Linux TMPFS backed par-
tition. The CM-ACTR model was itself implemented in Common
Lisp (CCL). On each compute node 30 of the 32 cpu cores were
dedicated to agent model computations, while the other two cpu
cores were reserved for use by the operating system and the Matrix
platform code. The experiments were run on one to 32 compute
nodes, which translates to 30 to 960 CPU cores being used for the
agent simulation code.

Figure 5 shows the decrease in simulation runtime when increas-
ing the number of compute cores for a given fixed-sized simulation
task. Each combination of population and compute cores was run
30 times and the mean runtime is plotted in Figure 5.7 The graph
shows an approximately linear decrease in runtime on a log-log
scale. This demonstrates the suitability of the Matrix platform for
seamlessly distributing compute load across varying numbers of
compute nodes.

One of the concerns in distributing computations across multiple
compute nodes is a potential degradation in performance due to
network use and synchronization issues. In Figure 6, we plot the
number of updates produced per second (which is a goodmeasure of
cpu use efficiency) when using varying numbers of compute cores.

7Note, that the error bars (standard error) are not shown in Figure 5, as they are barely
visible when plotted.

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1641

30 60 120 240 480 960
cpu cores

103

104

#
si
m
u
la
ti
on

ru
n
ti
m
e
(s
ec
on

ds
)

population size

0.30M

1.20M

2.10M

3.00M

Figure 5: Reduction in simulation

runtime of CM-ACTR simulation

with increasing number of cpu cores,

for different population sizes of

GitHub agents.

30 60 120 240 480 960

cpu cores

102

103

104

#
u
pd

at
es

ge
n
er
at
ed

pe
r
se
co
n
d

population size

0.30M

1.20M

2.10M

3.00M

Figure 6: Number of updates gener-

ated per second by CM-ACTR simu-

lation with increasing number of cpu

cores.

5000 10000 20000

lookback

10

20

40

80

co
m
pu

te
ti
m
e
(s
ec
on

ds
)

inverse cap

c = 700

c = 1400

c = 2000

c = 2500

Figure 7: Time required by the CM-

ACTRmodel to compute events on be-

half of 265 active users with varying

numbers of lookback events, and an

inverse event generator cap, on a sin-

gle CPU core.

We see that for all four population sizes, there is an approximately
linear increase in number of updates produced per compute core
on a log-log scale. This demonstrates that the cost of distribution
of computation on up to 32 compute nodes is minimal, when using
the Matrix.

6.3 Case study: Trade-off between accuracy and
computation time in the CM-ACTR model

For compute-heavy agent-based simulations, such as those intended
to run within the Matrix, it is necessary to take into consideration
accuracy versus performance tradeoffs that can be configured in the
model, and to systematically understand their impact, to obtain the
best results. In the CM-ACTR GitHub simulation, we identified two
primary parameters that could be used to trade off model accuracy
and performance.

The first is the lookback parameter, which is the number of
past events that a agent looks at, to initialize its state for future
event generation. Using a smaller history length, or lookback, is a
standard approach for reducing the model’s compute complexity,
since older events are less relevant as ACT-R also has time-based
decay to capture that phenomenon.

The second is an upper limit or cap on the number of events
generated per simulation time step. The effect of reducing this upper
limit is mainly visible for highly active agents in the system that
tend to produce orders of magnitude more events than the average
agent in the system. Nevertheless, the impact of this parameter
is significant. For actual model parameterization, we use inverse

cap c, which specifies the upper limit as δt
c where δt is the size

of the simulation timestep in seconds. Theoretically, for ACT-R’s
core memory mechanisms (partial matching, blending), the time
complexity of the computation is linear in both the lookback and
inverse cap 1

c .
Figure 7 shows the effects of lookback and inverse cap on per-

formance, measured in the number of seconds required to generate
one month’s worth of events for a group of 265 active users, using a
single CPU core. As can be seen, the performance is approximately
linear in lookback, and as the inverse cap c decreases, the model
takes more time to execute, also approximately linearly.

7 LIMITATIONS

As discussed in the Related Work section, there are multiple alter-
native ABMS platforms available to modelers who want to do agent
based modeling. We created the Matrix ABMS platform because the
existing systems did not meet our requirements (as described in Sec-
tion 1). However, there may be scenarios where existing platforms
are better choices than the Matrix.

One of the major benefits of using the Matrix platform is that
it supports code written in any programming language, allowing
reuse of existing libraries in those languages. However, if program-
ming language or existing library flexibility is not an issue, frame-
works such as Repast HPC [13] that use fast-compiled languages
such as C++ may be more beneficial.

The Matrix ABM system was built to utilize compute facilities
on commodity clusters, and popular cloud computing platforms
such as Amazon EC2, Google Compute Cloud, and Microsoft Azure.
Unlike high performance computing facilities, these platforms, as
of the time of writing, do not provide RDMA-based backends, such
as those provided by Infiniband or Intel OmniPath. Thus, if model
authors wanted to make use of these high speed network backends,
an HPC-based ABM platform such as Repast HPC would be a better
solution.

8 CONCLUSION AND FUTUREWORK

This paper describes the design, implementation, and execution of a
novel agent-based simulation platform called the Matrix. Scalability
was demonstrated, among other features. An outstanding issue is
evaluation of the trade-off among model fidelity and accuracy of
models.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable suggestions.
This work is partially supported by the Defense Advanced Re-

search Projects Agency (DARPA), via the Air Force Research Labo-
ratory (AFRL) (Grant No. FA8650-18-C-7826), and by the Defense
Threat Reduction Agency (DTRA) (Grant No. HDTRA1-17-0118).

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1642

REFERENCES
[1] M. Abrams. 2013. A moderate role for cognitive models in agent-based modeling

of cultural change. Complex Adaptive Systems Modeling (2013), 1ś33.
[2] A. Adiga, C. J. Kuhlman, H. S. Mortveit, and S. Wu. 2015. Effect of Graph Structure

on the Limit Sets of Threshold Dynamical Systems. In AUTOMATA. 59ś70.
[3] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin. 2004.

An integrated theory of the mind. Psychological review 111, 4 (2004), 1036.
[4] J. R. Anderson and L. J. Schooler. 1991. Reflections of the environment in memory.

Psychological science 2, 6 (1991), 396ś408.
[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. 2010. A View of Cloud Computing.
Commun. ACM 53, 4 (April 2010), 50ś58.

[6] R. L. Axtell. 2016. 120 Million Agents Self-Organize into 6 Million Firms: A Model
of the U.S. Private Sector. In Proceedings of the 2016 International Conference on
Autonomous Agents and Multiagent Systems. 806ś816.

[7] T. Balke and N. Gilbert. 2015. How Do Agents Make Decisions? A Survey. Journal
of Artificial Societies and Social Simulation (2015), 1ś30.

[8] C. Barrett, H. B. Hunt III, M. V. Marathe, S.S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. 2011. Modeling and analyzing social network dynamics using stochastic
discrete graphical dynamical systems. Theoretical Computer Science 412 (2011),
3932ś3946.

[9] F. Bianchi and F. Squazzoni. 2015. Agent-based models in sociology. WIREs
Comput Stat 7 (2015), 284ś306.

[10] E. Bruch and J. Atwell. 2013. Agent-Based Models in Empirical Social Research.
Sociological Methods & Research 44 (2013), 186ś221.

[11] A. Caballero, J. Botia, and A. Gomez-Skarmeta. 2011. Using cognitive agents in
social simulations. Engineering Applications of Artificial Intelligence 24 (2011),
1098ś1109.

[12] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and C. Greenough.
2012. Exploitation of High Performance Computing in the FLAME Agent-Based
Simulation Framework. In IEEE 14th International Conference on High Performance
Computing and Communications. 538ś545.

[13] N. Collier and M. North. 2013. Parallel agent-based simulation with Repast for
High Performance Computing. SIMULATION 89, 10 (2013), 1215ś1235. https:
//doi.org/10.1177/0037549712462620

[14] R. Conte and M. Paolucci. 2014. On agent-based modeling and computational
social science. Frontiers in Psychology 5 (2014), 1ś9.

[15] V. Dignum, J. Tranier, and F. Dignum. 2010. Simulation of intermediation using
rich cognitive agents. Simulation Modelling Practice and Theory 18 (2010), 1526ś
1536.

[16] J. M. Epstein. 2007. Generative Social Science: Studies in Agent-Based Computational
Modeling. Princeton U. Press.

[17] R. M. Fujimoto. 2000. Parallel and Distributed Simulation Systems. John Wiley &
Sons.

[18] N. Gilbert. 2007. Agent-Based Models. Sage.
[19] S. Gonzalez-Bailon, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. 2011. The

dynamics of protest recruitment through an online network. Scientific Reports
(2011), 1ś7.

[20] J. Huang, L. Liu, and L. Shi. 2016. Auction Policy Analysis: An Agent-Based
Simulation Optimization Model of Grain Market. InWinter Simulation Conference
(WSC). 3417ś3428.

[21] J. W. Kable, M. K. Caulfield, M. Falcone, M. McConnell, L. Bernardo, T.
Parthasarathi, N. Cooper, R. Ashare, J. Audrain-McGovern, R. Hornik, P. Diefen-
bach, F. J. Lee, and C. Lerman. 2017. No Effect of Commercial Cognitive Training
on Neural Activity During Decision-Making. Journal of Neuroscience (2017).

[22] A. Kangasrääsiö, K. Athukorala, A. Howes, J. Corander, S. Kaski, and A. Oulasvirta.
2017. Inferring Cognitive Models fromData Using Approximate Bayesian Compu-
tation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI). 1295ś1306.

[23] P. M. Kielar and A. Borrmann. 2018. Spice: a cognitive agent framework for
computational crowd simulations in complex environments. Auton Agent Multi-
Agent Syst 32 (2018), 387ś416.

[24] M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and C. Greenough.
2010. FLAME: Simulating Large Populations of Agents on Parallel Hardware
Architectures. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 1633ś1636.

[25] J. Klausen. 2015. Tweeting the Jihad: Social Media Networks of Western Foreign
Fighters in Syria and Iraq. Studies in Conflict & Terrorism 38 (2015), 1ś22.

[26] K. Kravari and N. Bassiliades. 2015. A Survey of Agent Platforms. Journal of
Artificial Societies and Social Simulation (2015), 1ś18.

[27] W. Li, Q. Bai, M. Zhang, and T. D. Nguyen. 2018. Modelling Multiple Influences
Diffusion in On-Line Social Networks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’18). 1053ś
1061.

[28] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. 2005. MASON: A
Multi-Agent Simulation Environment. Simulation: Transactions of the society for
Modeling and Simulation International 82 (2005), 517ś527.

[29] N.McDonald, K. Blincoe, E. Petakovic, and S. Goggins. 2014. Modeling Distributed
Collaboration on GitHub. Advances in Complex Systems 17 (2014).

[30] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. 1996. The Swarm simulation
system: A toolkit for building multi-agent simulations. Technical Report 96-06-042.
Santa Fe Institute.

[31] H. Mortveit and C. Reidys. 2007. An introduction to sequential dynamical systems.
Springer Science & Business Media.

[32] S. A. Myers and J. Leskovec. 2012. Clash of the Contagions: Cooperation and
Competition in Information Diffusion.. In ICDM. 539ś548.

[33] H. R. Nasrinpour, M. R. Friesen, and R. D. McLeod. 2016. An Agent-BasedModel of
Message Propagation in the Facebook Electronic Social Network. ArXiv. (2016).

[34] I. Naveh and R. Sun. 2006. A cognitively based simulation of academic science.
Comput Math Organiz Theor 12 (2006), 313ś337.

[35] B. R. Newell and A. Broder. 2008. Cognitive processes, models and metaphors in
decision research. Judgment and Decision Making 3 (2008), 195ś204.

[36] M. G. Orr, C. Lebiere, A. Stocco, P. Pirolli, B. Pires, and W. G. Kennedy. 2018.
Multi-scale Resolution of Cognitive Architectures: A Paradigm for Simulating
Minds and Society. In Social, Cultural, and Behavioral Modeling. 3ś15.

[37] B. H. Park, M. R. Allen, D. White, E. Weber, J. T. Murphy, M. J. North, and P.
Sydelko. 2017. MIRAGE: A Framework for Data-Driven Collaborative High-
Resolution Simulation. In Advances in Geocomputation, D. A. Griffith, Y. Chun,
and D. J. Dean (Eds.). Springer International Publishing, 395ś403.

[38] D. C. Plaut and A. K. Vande Velde. 2017. Statistical learning of parts and wholes:
A neural network approach. Journal of Experimental Psychology: General 146
(2017), 318ś336.

[39] L. Qian, Z. Luo, Y. Du, and L. Guo. 2009. Cloud Computing: An Overview. In
Cloud Computing, M. G. Jaatun, G. Zhao, and C. Rong (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 626ś631.

[40] S. Reimers, E. A. Maylor, N. Stewart, and N. Chater. 2009. Associations between
a one-shot delay discounting measure and age, income, education and real-world
impulsive behavior. Personality and Individual Differences 47 (2009), 973ś978.

[41] D. Reitter and C. Lebiere. 2010. Accountable Modeling in ACT-UP, a Scalable,
Rapid-Prototyping ACT-R Implementation. In In Proceedings of the 10th Interna-
tional Conference on Cognitive Modeling (ICCM).

[42] D. L. T. Rohde. 1999. LENS: The light, efficient network simulator. Technical Report
CMU-CS-99-164. Carnegie Mellon University.

[43] T. C. Schelling. 1971. Dynamic Models of Segregation. Journal of Mathematical
Sociology 1 (1971), 143ś186.

[44] E. Serrano, C. Á. Iglesias, and M. Garijo. 2015. A Novel Agent-Based Rumor
Spreading Model in Twitter. In Proceedings of the 24th International Conference
on World Wide Web (WWW). 811ś814.

[45] E. R. Smith and F. R. Conrey. 2007. Agent-Based Modeling: A New Approachfor
Theory Building in Social Psychology. Personality and Social Psychology Review
11 (2007), 87ś104.

[46] E. Sun, I. Rosenn, C. Marlow, and T. Lento. 2009. Gesundheit! Modeling Contagion
through Facebook News Feed. In International AAAI Conference on Weblogs and
Social Media.

[47] N. A. Taatgen and C. Lebiere J. R. Anderson. 2006. Modeling Paradigms in ACT-
R. In Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social
Simulation, R. Sun (Ed.). Cambridge University Press, 29ś52.

[48] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang. 2013. Network Structure of Social
Coding in GitHub. In 17th European Conference on Software Maintenance and
Reengineering. 323ś326.

[49] Z. Tufekci and D. Freelon. 2013. Introduction to the Special Issue on New Media
and Social Unrest. American Behavioral Scientist 57 (2013), 843ś847.

[50] L. G. Valiant. 1990. A bridging model for parallel computation. Commun. ACM
33 (1990), 103ś111.

[51] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov. 2015. Gender and Tenure Diversity in GitHub Teams. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
3789ś3798.

[52] C. Vecchiola, S. Pandey, and R. Buyya. 2009. High-Performance Cloud Comput-
ing: A View of Scientific Applications. In 2009 10th International Symposium on
Pervasive Systems, Algorithms, and Networks. 4ś16.

[53] X. Wang and M. P. Wellman. 2017. Spoofing the Limit Order Book: An Agent-
Based Model. In Proceedings of the 16th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS ’18). 651ś659.

[54] Y. Yu, H. Wang, V. Filkov, and B. Devanbu, P.and Vasilescu. 2015. Wait for It:
Determinants of Pull Request Evaluation Latency on GitHub. In Proceedings of
the 12th Working Conference on Mining Software Repositories. 367ś371.

Session 6C: Engineering Multiagent Systems 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1643

	Abstract
	1 Introduction
	1.1 Background, Motivation, and Novelty
	1.2 Requirements For Our Simulation System
	1.3 Contributions
	1.4 Exemplar Problem Description of GitHub

	2 Related Work
	3 Models
	3.1 Graph Dynamical System Model
	3.2 Software System Implementation Model

	4 Matrix Design and Implementation
	5 Agents and State Stores
	5.1 Agent processes in the Matrix
	5.2 State store processes in the Matrix

	6 Benchmark Application and Experiments
	6.1 CM-ACTR: An ACT-R model for Simulating GitHub System
	6.2 Scaling study using CM-ACTR model
	6.3 Case study: Trade-off between accuracy and computation time in the CM-ACTR model

	7 Limitations
	8 Conclusion and Future Work
	Acknowledgments
	References

