
Online Resource Allocation with Matching Constraints∗

John P. Dickerson

University of Maryland, College Park

College Park, MD, USA

john@cs.umd.edu

Karthik Abinav Sankararaman

University of Maryland, College Park

College Park, MD, USA

kabinav@cs.umd.edu

Kanthi Kiran Sarpatwar

IBM Research AI

Yorktown Heights, NY, USA

sarpatwa@us.ibm.com

Aravind Srinivasan

University of Maryland, College Park

College Park, MD, USA

srin@cs.umd.edu

Kun-Lung Wu

IBM Research AI

Yorktown Heights, NY, USA

klwu@us.ibm.com

Pan Xu

University of Maryland, College Park

College Park, MD, USA

panxu@cs.umd.edu

ABSTRACT
Matching markets with historical data are abundant in many appli-

cations, e.g.,matching candidates to jobs in hiring, workers to tasks

in crowdsourcing markets, and jobs to servers in cloud services. In

all these applications, a match consumes one or more shared and

limited resources and the goal is to best utilize these to maximize

a global objective. Additionally, one often has historical data and

hence some statistics (usually first-order moments) of the arriving

agents (e.g., candidates, workers, and jobs) can be learnt. To model

these scenarios, we propose a unifying framework, called Multi-
Budgeted Online Assignment with Known Adversarial Distributions.
In this model, we have a set of offline servers with different deadlines
and a set of online job types. At each time, a job of type j arrives.
Assigning this job to a server i yields a profitwi, j while consuming

ae ∈ [0, 1]K quantities of distinct resources. The goal is to design

an (online) assignment policy that maximizes the total expected

profit without violating the (hard) budget constraint. We propose

and theoretically analyze two linear programming (LP) based algo-

rithms which are almost optimal among all LP-based approaches.

We also propose several heuristics adapted from our algorithms and

compare them to other LP-agnostic algorithms using both synthetic

as well as real-time cloud scheduling and public safety datasets.

Experimental results show that our proposed algorithms are ef-

fective and significantly out-perform the baselines. Moreover, we

show empirically the trade-off between fairness and efficiency of

our algorithms which does well even on fairness metrics without

explicitly optimizing for it.

∗
Part of this work is done when Pan Xu was an intern at the IBM T. J. Watson Research

Center during the summer of 2016. Aravind Srinivasan’s research was supported in part

by NSF Awards CNS-1010789, CCF-1422569 and CCF-1749864, and by research awards

from Adobe, Inc. Karthik Sankararaman’s research was supported in part by NSF

Awards CNS-1010789 and CCF-1422569. John Dickerson’s research was supported by

NSF IIS RI CAREER Award #1846237. Pan Xu’s research was supported by NSF Awards

CNS-1010789, CCF-1422569 and NSF IIS RI CAREER Award #1846237. The authors

also like to thank Google for a generous gift support. We thank Aditya Parameswaran

and Xingjie Liu for useful discussions on datasets related to our problem.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms; Packing
and covering problems; Stochastic approximation;Online al-
gorithms; • Mathematics of computing → Matchings and fac-
tors;

KEYWORDS
Online Scheduling, Online Matching, Randomized Algorithms, Fair-

ness

ACM Reference Format:
John P. Dickerson, Karthik Abinav Sankararaman, Kanthi Kiran Sarpatwar,

Aravind Srinivasan, Kun-Lung Wu, and Pan Xu. 2019. Online Resource

Allocation with Matching Constraints. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Large-scale matching markets are abundant in many modern ap-

plications. A canonical example is the online advertising market,

which is the main source of revenue for internet companies like

Google. Online bipartite matching models and their variants pro-

vide mathematical insight into the design and analysis of these

ubiquitous markets. In the basic version, we are given a bipartite

graph G = (U ,V ,E) where U and V represent sets of advertisers

and keywords, respectively. There is an edge e = (u,v) if and only if
the advertisement of u is relevant to a keyword v . Keywords arrive
one-by-one in an online manner and must be matched to a potential

advertiser immediately and irrevocably. Matching a keyword v to

an advertiser u gives a profit ofwu,v .

However, the above abstraction for online advertising can be

used to model the more general assignment problem in various

emerging applications, ranging from crowdsourcing marketplaces

(e.g., Amazon Mechanical Turk [49], matching online workers to

offline tasks), ride-sharing platforms (e.g., Uber, matching online

requests to drivers [40]), to assignment of jobs to servers in cloud

services [27]. There are several other applications of online match-

ing models in advance admission scheduling and online recommen-

dations (e.g., matching online users to service providers or offline

products [17, 42, 52]). These problems can be abstracted as a variant

of online bipartite matching where (1) there are two sets of agents

with at least one coming online; in any online step an immediate

and irrevocable decision has to be made; (2) there is a set of offline

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1681

(limited) resources with each having a given total budget; every

match consumes a subset of these resources.

Assadi et al. [9] considered the Online Task Assignment (OTA)

problem arising in crowdsourcing marketplaces. They assumed a

global budget on a single resource. Each match of an online worker

to an offline task will require a payment to the worker. The goal is

to design an online matching policy such that the expected num-

ber of tasks completed is maximized without violating the budget

constraint. Ho and Vaughan [32] studied a capacitated OTA where

every task has several copies and thus can be matched multiple

times. Hence the number of copies of each task is an offline re-

source. Huang et al. [33], Ma et al. [40], Tong et al. [51] considered

OTA emerging in the real-time spatial crowdsourcing platforms

(e.g., Grubhub in the online food-ordering business). In this con-

text, we can assign multiple online orders to a single worker where

each worker has two kinds of budgets: the number of orders they

can handle in each trip and the total working hours and/or travel

distance over all trips.

In this paper, we propose a unifying framework to handle the var-

ious budget constraints in the above applications. Additionally, we

consider a realistic arrival assumption inspired from real datasets;

these help us get much better provable performance. The following

are the two distinctive features in the model.

Multi-Budgeted Constraints. We have a set of K resources with

each resource having a known total budget. Each online match (or

assignment) is associated with a vector-valued cost of dimension

K with the kth element denoting the amount of resource k the

match consumes. We call a resource integral if and only if the

value consumed by all possible matches is integral (e.g., number of

sub-jobs); otherwise we call it non-integral (e.g., the total running
time).

KnownAdversarial Distributions. Common assumptions on the

arrival sequence include Adversarial Order (AO) where the arrival

sequence is fixed by an adversary (e.g., [9]), Random Arrival Order

(RAO) where the arrival sequence forms a random permutation

over the set of online agents (unknown but fixed) (e.g., [50, 56])
and Known Independent and Identical Distribution (KIID) where

online agents present themselves, in every time-step, as a sam-

ple (with replacement) from a known and identical distribution

(e.g., [24, 47, 48]). In this paper, we consider a generalization of KIID,
called Known Adversarial Distributions (KAD), where the arrival

distributions are allowed to change over time [23]. We motivate

KIID and its generalization KAD as follows. In practice, allocation

algorithms are implemented in episodes. We have L episodes (where
an episode could last a few hours as in cloud platforms to a day as in

ride-sharing). Within each episode, algorithms use the information

from the past episodes to “learn” the arrival patterns which are

then used as an estimate for the current episode. This model has

a two-fold challenge; first is to learn the patterns across episodes

and the second is to have an efficient allocation mechanism within

an episode (which is the focus of this paper).

We now give a few concrete examples and show how our model

can be used to capture thesewith experiments on real world datasets

in the experiments section.

Resource allocation in datacenters. In modern data centers, one

of the challenges is to allocate various resources such as CPU,

memory, clusters, to various heterogenous tasks with different re-

quirements. The tasks usually fall into broad categories with very

structured demands for various resources [36]. A number of recent

works in the systems literature have empirically studied both ef-

ficient allocation as well fair division of resources [20, 26, 27, 35].

Our model can efficiently capture this multi-resource setting where

we have multiple shared resources with high sparsity (e.g., every
computer is associated with its CPU, while the set of resources are

CPU’s for all computers). The tasks arrive online and should be

allocated to a machine immediately and irrevocably. We look at

a small time-span of one-two minutes where multiple tasks are

run simultaneously on a machine with hard constraints on lim-

ited resources (i.e., every machine has a finite amount of CPU and

memory to simultaneously be utilized). The goal is to maximize

the number of tasks performed and/or to drop as few requests as

possible.

Public safety. Law enforcement in a given city or region is an

important task for any government. The challenge is to allocate

limited resources such as cops, vehicles, breath analyzers, etc. to

various regions where potential violations can occur while reducing

the response time and maximizing the efficiency (see, e.g., [16, 28,
39, 46] for some work in this area). This general problem can be

captured as an online resource allocation problem and naturally fits

in our model. We have a set of offline vertices which corresponds

to patrol team with multiple resources (e.g., number of cops, type

of vehicle, chase capabilities) stationed at various locations. When

a potential violation occurs, it has to immediately be matched to a

certain patrol team where the match fetches a reward proportional

to the nature of the violation.

Hiring candidates to jobs. Consider the scenario where an HR

division wants to hire new employees for a set of job positions

(see, e.g., [19, 54]). In practice they can hire at most one or two

new employees per post (due to a total budget) and need to train

each new employee to acquire the other skills needed. The training

process demands several kinds of related resources such as expe-

rienced staff, time, money (paid to trainers), machines, to name a

few. Suppose we have a finite budget allotted for each resource and

every successful hire fetches a monetary reward to the HR. Then

the problem facing the HR division can be precisely captured by

our model: each match of a candidate j to a post i will consume

various related resources due to the training process for j to acquire
skills required by i while absent from j.

Our contributions.We make several contributions in this paper.

First, we propose a general model that effectively captures the

online resource allocation problems in various matching markets

with historical data. Our model exploits the fact that historical data

can be used to learn the arrival distributions of online agents at

various times (e.g., [19] in case of hiring). Second, we present algo-

rithms that are provably correct and yield improved performance

over models where distributions are assumed to be unknown. In

particular, we first consider the simple case when only integral

resources are involved with sparse resource consumption. We show

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1682

Figure 1: Five shared resources with budgets B1, B2, . . . , B5.

that in this case, our algorithms are near-optimal among all LP-

based algorithms. Next we consider the general case when both

integral and non-integral resources are involved. We show that to

achieve a target competitive ratio, our model admits algorithms

which have significantly improved lower-bound requirements over

the budgets of non-integral resources, compared to previous ones

when arrival distributions are unknown. In particular, our results

completely eliminate the dependence on the ratio of largest to the

smallest bid [9]. This is crucial since this ratio can typically be very

large if the bids are non-uniform. Third, we consider a special case

when each assignment consumes a single non-integral resource

with no assumptions on its budget. We devise an algorithm with

theoretical guarantees and also show hardness results. Finally, we

give an empirical study of our algorithms and compare them with

natural heuristics on real datasets to validate and complement our

theoretical results. We also define two natural metrics for fairness

for this setting and explore how efficiency maximizing algorithms

perform on these fairness metrics.

2 PRELIMINARIES
We first formally define the model considered in this paper and then

describe the required background for the technical sections of this

paper. As a notation, denote [k] := {1, 2, . . . ,k} for any positive

integer k .

Multi-BudgetedOnlineAssignment (MBOA-KAD). Let I = {i ∈
[m]} be the set of (offline) servers, J = {j ∈ [n]} be the set of types
of (online) jobs and T be the time horizon. Every server i has a
(hard) time-out di ∈ [T] after which it shuts down. LetG = (I , J ,E)
be the bipartite graph with an edge e = (i, j) iff job-type j can be

run on server i . Let N (j) = {i : (i, j) ∈ E} be the set of servers

that can handle job-type j and N (i) = {j : (i, j) ∈ E} be the set of
job-types that can run on server i . Each edge e = (i, j) has a weight
we denoting the profit obtained by allocating server i to job-type j.
Each assignment e = (i, j) consumes one or more of a given set of

K resources. The cost of an allocation e is given by a K-dimensional

vector ae ∈ [0, 1]K , where the kth dimension ae,k represents the

amount of resource k consumed by assignment e . Each resource k
has a budget Bk ∈ R+ that must not be exceeded. For each e , let
Se = {k ∈ [K] : ae,k > 0}, i.e., the set of resources it consumes.

At any instant t ∈ [T], a job of type j arrives with a probability

pjt such that

∑
j pjt ≤ 1 (thus, with probability 1 −

∑
j pjt , no job

arrives at time t). Let Ejt = {e = (i, j), i ∈ N (j) : di ≥ t} denote the
set of available assignments (i.e., the corresponding servers should

be active at time t) for the job-type j at time t .1 For each e ∈ Ejt , we
say e is safe or valid iff for each k ∈ Se , resource k has a remaining

budget larger or equal to ae,k . When a job of type j arrives at t , we
have to make an immediate and irrevocable decision: either reject it

or choose a safe option e ∈ Ejt and get a resultant profitwe . Once a

safe assignment e is scheduled, the budget of each resource k ∈ Se
will be reduced by ae,k . Our goal is to design an online assignment

policy such that the expected profit is maximized.

Note that all algorithms presented in this paper are applicable

to a more general setting where each successful match e yields a
random profitWe (independent from others). All the algorithms

need to know iswe � E[We] for each e 2
.

The performance of online algorithms is usually measured using

the notion of competitive ratio (see [13]). For our problem, we

define the competitive ratio as follows.

Definition 2.1 (Competitive Ratio). Let ALG denote a given online

algorithm whose performance we want to measure. Consider an

instance I of the problem. Let E[ALG(I)] denote the expected

profit obtained byALG for this instance (here expectation is over the

randomness in the input as well as any randomness the algorithm

uses). Similarly, let E[OPT(I)] denote the expected value of the

optimal offline solution (i.e., the expected value of the optimal

solution on seeing the entire arrival sequence). The competitive

ratio is defined as infI E[ALG(I)]/E[OPT(I)].

For any maximization problem like the one studied here, we say

ALG achieves a ratio at least α ∈ (0, 1) if for any instance of the

problem the expected profit obtained by ALG is at least a fraction

α of the offline optimal solution. Typically computing the value

of E[OPT(I)] directly is hard. A common methodology to bypass

this is to construct a linear program (called benchmark LP) whose
optimal value is an upper bound on E[OPT(I)]. Hence comparing

E[ALG(I)] to the optimal value of this LP gives a lower bound on

the competitive ratio. We will now describe the benchmark LP used

in this paper.

Recall Ejt be the set of available assignments for a job of type

j arriving at time-step t . For any t , let Et =
⋃
j Ejt be the set

of all possible assignments (a-priori before the execution of any

online algorithm) at t . Further, for each t and e ∈ Et , let xe,t be the
probability that an assignment e is made at round t in an offline

optimal algorithm. Then the benchmark LP we use is as follows.

maximize

∑
t
∑
j
∑
e ∈Ej,t wexe,t (1)

subject to

∑
e ∈Ejt xe,t ≤ pjt ∀j ∈ J , t ∈ [T] (2)∑
t
∑
e ∈Et xe,tae,k ≤ Bk ∀k ∈ [K] (3)

0 ≤ xe,t ≤ 1 ∀e ∈ E, t ∈ [T] (4)

This LP can be interpreted as follows. Constraint (2) — for any

given job of type j and time t , the probability that we assign a server
to j is at most the probability that j arrives at step t . Constraint (3) —
for any (integral or non-integral) resource k , the expected consump-

tion cannot be larger than its budget (Bk). The last constraint (4)

1
In this paper, we assume w.l.o.g. that each server can be allocated for an arbitrary

number of times before its shutdown. Any potential restriction on the number of

allocations can easily be modeled by an additional budget constraint.

2
An allocation does not imply a completion of a job, hence this uncertainty can be

handled in our model.

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1683

is due to the fact that all {xe,t } are probability values and hence

should lie in the interval [0, 1]. The above analysis suggests that

any offline optimal solution {xe,t } should be feasible for the above

LP. Formally, we have Lemma 2.2 which claims that the optimal so-

lution of this LP is an upper bound on the expected offline optimal

value.

Lemma 2.2. The optimal value to LP-(1) is a valid upper bound
for the offline optimal solution.

The benchmark LP-(1) has previously been used in [7] and the

proof of Lemma 2.2 can be found there.

Integral and non-integral resources. For an integral resource

k , we have that for any e ∈ E, ae,k ∈ {0, 1} while for a non-

integral resource k , we have that for any e ∈ E, ae,k ∈ [0, 1].

For any integral resource k , WLOG we assume that Bk ∈ Z+. Let
K1 = {1, 2, · · · ,K1} and K2 = {K1 + 1, · · · ,K1 + K2} denote the

set of integral and non-integral resources respectively. For any

assignment e , we assume |Se ∩K1 | ≤ ℓ1 and |Se ∩K2 | ≤ ℓ2, where

ℓ1 and ℓ2 are the integral and non-integral sparsity respectively.

Adaptive and non-adaptive algorithms. For an LP-based ALG,
we say ALG is non-adaptive if for a given LP solution, the computa-

tion of strategy in each round t does not depend on the strategies

in the previous rounds from 1, 2, . . . , t − 1. Otherwise, we call it

“adaptive”. Here we distinguish “adaptive” and “non-adaptive” to

highlight the computations of strategies in the “online” phase.

3 OTHER RELATEDWORK
We now describe some related works other than those already

described. Our problem falls under the online packing family of

problems. Some representative works on this include [4, 6, 14, 15,

22, 37]. The most relevant to this paper is that of Devanur et al. [22]

who study it in the unknown i.i.d. setting. We have the following

important distinctions. First, our work assumes the known i.i.d.

setting. Second, Devanur et al. [22] study this problem in the large

budget regime (i.e., B ≥ Ω(1

ϵ 2)) and obtain 1 − ϵ approximation.

This paper however considers regimes where the lower bound

on the budget is only Ω(1

log ϵ). We circumvent the necessity for a

large lower-bound on the budget is by assuming sparsity in the

packing program. Closely related to the online packing problems

literature is another line of work on a family of problems called

bandits with knapsacks [2, 3, 5, 10, 11, 45]. These works consider
the learning variant of the online packing problems and obtain

approximation ratios that are comparable to [22]. Many special

cases of online packing problems and bandits with knapsacks have

been studied across communities including dynamic pricing ([21]

and references within), network routing and optimization ([10]

and references within), network revenue management ([12] and

references within).

4 ALGORITHMS
In this section, we describe our two main algorithms NADAP and

ADAP.

Non-adapative algorithm (NADAP).AlgorithmNADAP is a non-

adaptive algorithm based on LP. Suppose {x∗e,t |t ∈ [T], e ∈ Et } is
an optimal solution to the LP-(1). The main idea behind NADAP

(described in Algorithm 1) is as follows. Suppose a job of type

j arrives at time t : sample a server i from Ejt with probability

αx∗e,t /pjt , where α ∈ (0, 1] is a parameter optimized in the analysis.

Make the assignment e = (i, j) iff e is safe (i.e., it will not violate
any budget constraint at t).

ALGORITHM 1: The non-adaptive algorithm (NADAP)

For each time t , let the arriving job be denoted by j .
Let Êjt ⊆ Ejt be the set of safe assignments available for j .
If Êjt = ∅, then reject j ; else sample an assignment e ∈ Êjt with
probability αx ∗

e,t /pjt .

The last step of Algorithm 1 is well defined since we have∑
e ∈Êjt

αx∗e,t /pjt ≤
∑
e ∈Ejt x

∗
e,t /pjt , which is at most 1.

3

Adapative algorithm (ADAP). Algorithm ADAP is an adaptive

algorithm which uses Monte-Carlo simulations. The main idea

is as follows. Suppose we aim to develop an online algorithm

achieving a competitive ratio of γ ∈ [0, 1]. Consider an assign-

ment e = (i, j) ∈ Et for a job j at time t . Let Se,t be the event

that e is safe (i.e., we can choose this assignment without budget

violation for all resources) conditioning on the arrival of e at t . By
using Monte-Carlo simulation of the strategy up to t , we can get

a sharp estimate of Pr[Se,t], say βe,t , with polynomial number

of samples. Therefore if e is safe at t , we choose it with probabil-

ity
xe,t
pj,t

γ
βe,t

, which implies that e is chosen with probability γxe,t

unconditionally.

The simulation-based attenuation technique has been used pre-

viously in other stochastic optimization problems (e.g., stochastic
knapsack [41], stochastic matching [1]). We assume that the sharp

estimate βe,t of Pr[Se,t] for all t and e is exact, since the sampling

error can be accounted as a multiplicative factor of (1 − ϵ) in the

competitive ratio by a standard Chernoff bound argument. Formally

our algorithm, denoted by ADAP, is described in Algorithm 2. The

running time of this algorithm is polynomial in 1/ε .

ALGORITHM 2: The adaptive algorithm (ADAP)

At time t , let j be the job that arrives.
Let Êj,t ⊆ Ej,t be the set of safe assignments available for j .
If Êj,t = ∅, then reject j ; else sample an assignment e ∈ Êj,t with

probability

x∗
e,t
pj,t

γ
βe,t

.

To ensure the above algorithm is mathematically well-defined

with parameter γ , we need to show that βe,t ≥ γ for every t and e .

Lemma 4.1 (Validity of ADAP). By choosing γ = 1/(ℓ + 1), we
have βe,t ≥ γ for all t ∈ [T] and e ∈ Et .

Both the algorithms presented do not work in the regime when

B is small. To overcome this, we propose a new algorithm with

additional restrictions when Bk = 1. Consider MBOA-S which

has the following setting: (1) all resources are non-integral and

have a unit budget Bk = 1; (2) each assignment requires only one

3
In other words, with probability 1 −

∑
e∈Êjt

αx ∗
e,t /pjt , we will do nothing and

reject job j .

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1684

single resource (ℓ = 1); (3) servers have no deadline (di = T); (4)
the arrival distributions over all job-types are identical across all
rounds, i.e., for each job-type j, pjt = pj for all t ∈ [T]. It can be

shown that the performance of ALG1 and ALG2 can be arbitrarily

bad (see full version).

This new setting requires a modified benchmark LP. For each

e ∈ E, let xe be the expected number of times the assignment e
is made in the offline optimal over the T rounds. For each e , we
use ae to denote the cost of e for the unique resource it consumes.

For a given threshold α = 1/2, we say e is big if ae > α and small
otherwise. For each resource k , let BIG(k) (SM(k)) refers to the set

of big assignments (small) participating on constraint (or resource)

k . We use the following benchmark LP.

max

∑
e ∈E wexe (5)

s.t.

∑
e ∈Ej xe ≤ pj ∗T ∀j ∈ J , t ∈ [T] (6)∑
e ∈BIG(k) xeae +

∑
e ∈SM(k) xeae ≤ 1 ∀k ∈ [K] (7)∑

e ∈BIG(k) xe ≤ 1 ∀k ∈ [K] (8)

Constraint (8) is valid since in any offline optimal, at most one

big assignment from BIG(k) can be made, for each k . We design

a new algorithm for this setting, whose main idea is as follows.

We split the whole T rounds into two stages, where the first stage

consists of the first T ∗ β rounds and the second stage consists

of the remaining rounds. In the first stage, our algorithm only

considers big assignments and drops any small assignment while in

the second stage it considers only small ones while dropping the big

ones. For each job-type j , let BIG(j) (SM(j)) be the set of big (small)

assignment with respect to j. Suppose {x∗e } is an optimal solution

to the new benchmark LP (5). We can then formally describe the

algorithm as in Algorithm 3.

ALGORITHM 3: MBOA-S(β, γ1, γ2)

The first stage:
For each time t ∈ [T ∗ β], assume some job j arrives.

Sample a big assignment e ∈ BIG(j) with probability
γ1x∗

e
pj ∗T

.

If e is safe, then make it; otherwise reject it.

The second stage:
For each time t ∈ {T ∗ β + 1, T ∗ β + 2, . . . , T], assume some job j arrives.

Sample a small assignment e ∈ SM(j) with probability
γ2x∗

e
pj ∗T

.

If e is safe, then make it; otherwise reject it.

5 MAIN RESULTS AND TECHNIQUES
We now describe the main results and theoretical techniques used.

Detailed proofs are deferred to the full version.

First, we present two algorithms based on LP-(1), NADAP and

ADAP, which are non-adaptive and adaptive respectively. For the

integral MBOA-KAD where all resources are integral, we have the

following theorems.

Theorem 5.1 (Performance of NADAP for integral case).

For MBOA-KAD when all resources are integral with sparsity ℓ,
NADAPwith α = 1

ℓ+1 achieves a competitive ratio of at least 1

ℓ+1 (1−
1

ℓ+1)
ℓ ≥ 1

e(ℓ+1) using LP-(1) as the benchmark. The analysis for this
is tight.

Theorem 5.2 (Performance of ADAP for integral case). For
MBOA-KAD when all resources are integral with sparsity ℓ, ADAP
with γ = 1

ℓ+1 achieves a competitive ratio of at least 1−ϵ
ℓ+1 , for any

given constant ϵ > 0. Moreover, no adaptive algorithm can achieve a
ratio better than 1

(ℓ−1+1/ℓ)
.

From the above two theorems, we have that NADAP and ADAP

are almost optimal among all algorithms that use LP-(1) as bench-

mark, for the integralMBOA-KAD.Additionally, Theorem 5.1 achieves

the best possible ratio that NADAP can get based on LP-(1). For

algorithms which do not use LP-(1) as benchmark, the hardness

result is O(ln ℓ/ℓ) since the inapproxibility result of ℓ-uniform hy-

pergraph matching [30] carries over to this setting.

We now show an example to show that the results proved in

Theorem 5.1 is tight.

Example 5.3 (Tight Example for Integral Resources). Consider a
star graphG = (I , J ,E)where |I | = 1, |J | = ℓ+1,E = {ej |j ∈ [ℓ+1]}

with T = ℓ + 1. Let d1 = T , i.e., no deadline constraints. For each

t ∈ [T], pjt = 1 iff j = t and 0 otherwise. We use aj and x∗j to denote
the terms aej and x

∗
ej ,t=j . Let K = ℓ with Bk = 1 for each k ∈ [ℓ]

and aj = ej for each j ≤ ℓ, where ej is the jth standard-basis unit

vector of dimension K , and aj = 1 (of dimension K) for j = ℓ + 1.
Let the optimal solution to LP-(1) be x∗j = 1 − ϵ for each j ≤ ℓ and

x∗
ℓ+1
= ϵ for a proper weight vector. Now consider the assignment

e = eℓ+1 when j = ℓ + 1 comes at t = T . Let us compute the

probability Pr[Se,T] that e is safe at T in NADAP(α). Assignment

e will be safe at t = T iff none of ej , j ≤ ℓ is made before. At each

time t < T , NADAP(α)makes the assignment ej=t with probability

αx ∗
j

pj = α(1− ϵ). This implies that Pr[Se,T] = (1−α(1− ϵ))ℓ , which

matches the lower bound. □

Next, we consider a general case, where we have both integral

and non-integral resources while making a mild assumption that

the budget of any non-integral resource is large enough. Let B be

the minimum budget for any non-integral resource. We then prove

the following two theorems.

Theorem 5.4 (Performance of NADAP for the general case).

For MBOA-KAD with integral and non-integral sparsity ℓ1 and ℓ2,

NADAP with α = 1

ℓ1+1
achieves a competitive ratio of 1

ℓ1+1

(
(1 −

1

ℓ1+1
)ℓ1 − ε

)
, for any ε > 0, assuming B ≥ 2 ln(

ℓ2
ε)

(
1 +

3ℓ1+2
ℓ2
1

)
+ 2.

Theorem 5.5 (Performance of ADAP for the general case).

For MBOA-KAD with integral and non-integral sparsity ℓ1 and ℓ2,
ADAP with γ = 1−ϵ

ℓ1+1
achieves a competitive ratio of 1−2ε

ℓ1+1
for any

given ε > 0, assuming B ≥ 3 ln(
ℓ2
ε)(1 +

1

ℓ1
) + 2.

Our results imply that with the knowledge about arrival distri-

butions we can obtain significant improvements over the results for

the adversarial model. Let us compare our results with those of [9].

The setting in [9] can be viewed as a special case of our model with

ℓ1 = ℓ2 = 1. From Theorem 5.5, we obtain a (1
2
− ϵ) competitive

ratio assuming B ≥ 12 ln(1/ϵ) while [9] obtain a ratio ofO(1

Rϵ lnR),

assuming B ≥ R
ϵ and R �

maxbi, j
minbi, j

(i.e., the ratio of the largest bid to
the smallest bid over all possible assignments). Note that our results
completely removes the dependency on R and also significantly relax

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1685

the lower bound assumption on B. This is a theoretical evidence to
advocate the use of historical data to learn arrival distributions.

Third, we consider the case of MBOA-KAD when both integral

and non-integral resources are involved but no lower bound is

known for the budgets of non-integral resources. To make the

problem tractable, we make the following three assumptions: (1)

each assignment consumes only a single resource (ℓ = 1); (2) dead-

line constraints on all servers are removed; (3) the arrival distribu-

tions over all job types are identical across all rounds. We refer to

MBOA-KAD under these three simplifying conditions as MBOA-S.

Note that MBOA-S still generalizes the well-known online bipar-

tite matching problem and several variants such as Adwords and

Display Ads (e.g., [25, 29, 34, 43]). It can be shown that the perfor-

mance of the two previous algorithms, NADAP and ADAP, can be

arbitrarily bad in this case. We propose a strengthened benchmark

LP and obtain the following theorem.

Theorem 5.6. There exists an online algorithm which achieves an
online ratio of 1

4
forMBOA-S. Meanwhile, no online algorithm can

achieve a ratio better than e−1
2e−1 ∼ 0.387.

6 EXPERIMENTS
In this section we describe our experimental results. We use the

Google cluster trace data [18, 31] which was used by Kash et al.

[36]. This dataset contains traces of job allocation to servers within

Google’s datacenters. We process this dataset for our purposes,

which we describe below. To further show the generality of our

model, we also run additional experiments modeling an allocation

problem in the public safety domain.

Experimental setup. Every machine is characterized by an id, the

total CPU capacity and the total memory capacity. Each sample is

from an interval of 2 minutes in the dataset and hence is a short

enough time-span to consider hard total budget on the resources.

A job type is characterized by the CPU and memory requirements.

Hence there can be multiple jobs of the same type (which we use to

construct our arrivals). Every machine consumes two resources and

these resources are not shared by other machines (this application

has a simpler notion of shared resources compared to the generality

our model can handle). Therefore we have total of 2m resources

with a sparsity ℓ = 2. We assume that all machines are active

throughout.

Dataset and preprocessing. Our experimental setup is inspired

from the experiments of Kash et al. [36]. We use a random subset

of the dataset by samplingm machines and n jobs randomly for

m = 10 and n = {20, 100}. Our experiments are run for both the

(m,n) pairs. We assign arrival rates randomly to each of the jobs

and use it for all the experiments. For every (m,n) pair we generate
the compatibility graph by choosing 5 machines at random, that

a job j can be run on. All experiments are reported by running

100 independent trials and taking the sample average. Assignment

weights are assigned by generating an independent random number

between 0 and 1.

Algorithms. We compare our main algorithm NADAP with the

following three baselines. These baselines have been used previ-

ously in the literature [23]. The baselines are as follows. Suppose

job j arrives at time t . (1) SCALED: sample an assignment e ∈ Ejt

with probability

x ∗
e,t∑

e∈Ejt x
∗
e,t

and assign e iff safe. (2) USamp: sample

an assignment e ∈ Ejt uniformly from Ejt and assign e iff safe.

(3) Greedy: choose the assignment e ∈ Ejt , which has the largest

weight we among all safe options in Ejt . Finally note that ADAP

had similar performances as NADAP in our experiments and for

clarity we omit those from the figures. Deviating from the conser-

vative estimate predicted by theory for α in NADAP, throughout

the experimental section we set α = 1. We chose this by tuning for

optimal performance on a small holdout of the dataset. The reason

this value is different from what theory predicts is that, in theory

we are optimizing for the worst case input, while, as will be evident

from the results, these datasets do not represent the worst-case

graphs.

Throughput experiments.We compare the total weight of all the
assignments made by each of these algorithms. The first column

in Figure 2 describes the details. It is clear that our main algorithm

NADAP performs the best. Among the baselines Greedy is better
than the other algorithms. Despite SCALED having the information

of the optimal solution from the LP, it is not able to perform as good

as Greedy. This shows the inherent power of adaptive algorithms.

Fairness experiments. We run further additional experiments to

study the fairness of these algorithms. Fairness is a broad topic

and our goal in this paper is to show that despite not explicitly

optimizing for it, NADAP performs well compared to the baselines.

We discuss two notions of fairness which are inspired from the

max-sum and max-min fairness of Kash et al. [36]. Our setting dif-

fers from theirs and hence we cannot directly use their definitions.

However we define two notions, namely drop-sum and drop-max
fairness. For a give type j, let dsj be defined as the expected differ-

ence between the number of times this type appears in an arrival

sequence and the number of times an algorithm assigns it success-

fully. Drop-sum metric calculates the sum of dsj for every type j
while drop-max calculates the maximum over all types j of dsj .
Intuitively, higher the value of either of these metrics, the more

unfair the algorithm is. In the second column of Figure 2 we show

how the baselines and our algorithm performs on the drop-sum
metric. Our algorithm once again comes on top with almost no

difference among the other three baselines. On the drop-max metric

in the third column of Figure 2, however, we see an interesting

result where our algorithm is slightly worse than the three base-

lines. However the difference is not too significant, suggesting that

alongside maximizing throughput, NADAP is also inherently fair.

Does graph sparsitymatter? 4 We further study if either through-

put or the two fairness metrics significantly change for the algo-

rithms when the graph sparsity is varied. We use the setup of 10

machines, 20 jobs types and 1000 arrivals as the underlying pa-

rameters. Graph sparsity is varied by controlling the number of

neighbors each job-arrival can be assigned to. Figure 3 shows the

results for this experiments. As evident, there is some variation

in the absolute numbers, but these are not significant enough in

4
Term sparsity is overloaded. Here it refers to the number of edges, which is different

from sparsity of resources used throughout the paper.

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1686

Figure 2: Allocation experiments on the Google cluster trace dataset. The upper row corresponds to 10 machines and 20 job types, while the
lower row corresponds to 10machines and 100 job types. First column is the results for Throughput experiments, second column is the results
for the drop-sum fairness experiments and the third column is the results for the drop-max fairness experiments.

absolute terms. Additionally, these numbers do not change the rel-

ative ordering for the performance of the algorithms in either of

the three metrics.

Discussion. The main experiments suggest that NADAP performs

well in practice, alongside having good theoretical guarantees. In

fact, the throughput experiments indicate that the performance

guarantee is far better than the theoretical prediction of around 0.3.

We also show that for a reasonable definition of fairness metrics,

our algorithm performs as good or better than the baselines. This

suggests that our model and algorithm is suitable for scenarios

where we want to maximize both throughput and fairness proper-

ties. It is also an interesting future direction to explicitly account

for fairness to further improve the performance of NADAP.

6.1 Additional Experiments for the Public
Safety Application

We use a large-scale policing dataset [44] for the public safety

application.

Dataset and assumptions. The policing dataset [44] contains

records from the Texas state since 2010. Every record in this dataset

contains the following: County, Latitude and Longitude, Time, Vi-

olation, Officer id, whether there was a search, stop outcome and

driver details such as gender, age, race (which we do not require for

our purposes). We use this information to create offline and online

vertices as well as the graph as follows. For every county we create

one offline vertex and pick one of the locations within this county

as the station (we assume that dispatch for this county is from this

station). For the online side, we create one online vertex for every

pair of (location, offense).
5
For each vertex or type (offline and

5
Location is a latitude longitude pair rounded to the nearest integer.

online), the set of neighbors is the set of 5 counties that are within

a radius r = 2 (in terms of differences in latitude and longitude) of

the location associated with this vertex. The dataset provides the

time rounded to the nearest minute. We regard every minute as a

time-step and set the time horizon T = 24 ∗ 60 = 1440 (24-hour

period). We sample 20 frequently appearing counties for the offline

side, 120 frequently appearing (location, offense) pairs for the on-

line types. To learn pjt ’s, we average the arrival frequencies in a

randomly chosen 90-day period and use another randomly chosen

14-day period for testing. We consider the unweighted case and

are only interested in maximizing the total number of unlawful

activities handled.

We assume that there are 7-types of resources, namely, total

travel distance, officers, patrol vehicles and equipments for speed-

ing, search, citation and arrest. The first 3 resources are owned by

each offline vertex (station) while the last four are shared across

vertices (therefore a total of 3 ∗ |I | + 4 resources). The first resource
captures the total working hours each station can continuously be

engaged in and account for it as the total travel distance travelled.

The last four represent the resources involved for detecting and issu-

ing a speeding violation, for conducting a search on the vehicle, for

issuing a citation and for making an arrest on the spot respectively.

Each match e = (i, j) (assignment of online offense type j to station
i) will consume 7 resources; the consumption of the first three re-

sources is jointly determined by the pair (i, j) (denoted by ae,1) and
the consumption of the last four resources is determined by type j
(denoted by ae,2). By averaging over all records from the dataset, we

compute and normalize such that ae,1 ∈ [0, 1]3 and ae,2 ∈ [0, 1]4.

To make ae,2 depend on station i , we uniformly sample a number

λi from [0, 1] and set the final cost ae as (ae,1, λi ∗ ae,2).

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1687

Figure 3: Varying the graph sparsity for instance with 10 machines, 20 job types and 100 arrivals of jobs. First, second and third column
corresponds to throughput, drop-sum and drop-max metrics respectively.

(a) Comparing algorithms when all resources have a uniform budget.
x and y-axises represent the budget value and competitive ratio re-
spectively.

(b) Comparing algorithms when different resources have different
budgets

Experimental parameters and baselines. First, we conduct ex-
periments by choosing a unform budget for all resources. In particu-

lar we choose the budget value in the range {1, 2, 4, 5, 6, 8, 10, 25, 50,100}.

We also run an experiment with different budgets for different re-

sources. For every resource we choose a random integer between 1

and 100 as the budget. The value of these budgets are chosen to en-

sure that it accounts for both the small budget (i.e., optimal solution

is much smaller than T) and the large budget (i.e., optimal is very

close to T) case. For each given experiment and algorithm, we run

10 independent runs on each of the 14-day testing period and take

the average. We use the following parameters for the algorithms.

For NADAP, we set α = 1 (which is higher than the theoretical

value which was fine-tuned via standard cross-validation approach)

and set γ = 1 for ADAP.

Results and discussion. Figures 4a and 4b describe the respective
experimental results when the total budget takes a uiform value or

different values among resources. From the results we can observe

that our algorithms ADAP and NADAP significantly out-perform

all our natural baselines. Among the baselines the LP-based base-

line (SCALED) beats the LP-agnostic baselines (albeit by a small

amount). Additionally, our algorithms almost approach the optimal

on this dataset which is far better than the theoretical guarantee

(around 1/8 = 0.125). Hence experimentally we show that our algo-

rithms are useful, beat the natural baselines comprehensively and

achieve near optimal in practice.

7 CONCLUSIONS & FUTURE RESEARCH
In this paper, we studied the multi-budgeted allocation problem in

the context of matching markets such as crowdsourcing, candidate

hiring, etc. In this context, we proposed a novel model and provided

efficient LP-based algorithms with improved competitive ratios. In

particular, we showed two algorithms and analyzed their perfor-

mance formally. In the theoretical analysis of these algorithms, we

used novel ideas which can potentially be of independent interest

in both the analysis of online matching and allocation algorithms.

Finally, our algorithms were compared against several heuristic

baselines experimentally on a real-world dataset to validate our

theoretical results. We also explored properties of our algorithms

in the context of tradeoffs in economic efficiency and fairness.

In addition to further exploration of the interplay between vari-

ous fairness objectives and the traditional efficiency-maximizing

objective used in many settings, we believe that the inclusion of

incentives in our models would be of future interest. For example,

Kash et al. [36] explore various design desiderata in their dynamic

fair divison (of divisible tasks) model; similar qualitative steps could

be taken in our model (which focuses on indivisible allocation). As
another example, resource allocation in the security games set-
ting [38], limited resources are deployed to prevent a strategic ad-

versary from attacking targets. Recent work has explored security

games under various forms of dynamism [8, 53, 55].

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1688

REFERENCES
[1] Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. 2015. Improved

approximation algorithms for stochastic matching. In ESA.
[2] Shipra Agrawal and Nikhil Devanur. 2016. Linear contextual bandits with knap-

sacks. In NIPS.
[3] Shipra Agrawal and Nikhil R Devanur. 2014. Bandits with concave rewards and

convex knapsacks. In EC.
[4] Shipra Agrawal and Nikhil R Devanur. 2014. Fast algorithms for online stochastic

convex programming. In SODA.
[5] Shipra Agrawal, Nikhil R Devanur, and Lihong Li. 2016. An efficient algorithm

for contextual bandits with knapsacks, and an extension to concave objectives.

In COLT.
[6] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. 2014. A dynamic near-optimal

algorithm for online linear programming. Operations Research 62, 4 (2014).

[7] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. 2013. The online

stochastic generalized assignment problem. In APPROX-RANDOM.

[8] Tansu Alpcan and Sonja Buchegger. 2011. Security games for vehicular networks.

IEEE Transactions on Mobile Computing 10, 2 (2011), 280–290.

[9] Sepehr Assadi, Justin Hsu, and Shahin Jabbari. 2015. Online Assignment of

Heterogeneous Tasks in Crowdsourcing Markets. In AAAI-HComp.
[10] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. 2013.

Bandits with knapsacks. In FOCS.
[11] Ashwinkumar Badanidiyuru, John Langford, and Aleksandrs Slivkins. 2014. Re-

sourceful contextual bandits. In COLT.
[12] Omar Besbes and Assaf Zeevi. 2012. Blind network revenue management. Oper-

ations research 60, 6 (2012), 1537–1550.

[13] Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. 2007. Online primal-dual

algorithms for maximizing ad-auctions revenue. In ESA.
[14] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for cover-

ing and packing. Mathematics of Operations Research 34, 2 (2009), 270–286.

[15] Niv Buchbinder, Joseph Seffi Naor, et al. 2009. The design of competitive online

algorithms via a primal–dual approach. Foundations and Trends® in Theoretical
Computer Science 3, 2–3 (2009), 93–263.

[16] Jan M. Chaiken and Peter Dormont. 1978. A Patrol Car Allocation Model: Back-

ground. Management Science 24, 12 (1978).
[17] Xi Chen, Will Ma, David Simchi-Levi, and Linwei Xin. 2016. Dy-

namic recommendation at checkout under inventory constraint.

http://dx.doi.org/10.2139/ssrn.2853093 (2016).
[18] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H Katz.

2010. Analysis and lessons from a publicly available google cluster trace. (2010).

[19] V.E. Chenthamarakshan, N. Kambhatla, R.C. Kanjiranthinkal, A.K.R. Singh, and

K. Visweswariah. 2012. Systems and methods for matching candidates with

positions based on historical assignment data. (May 17 2012). https://www.

google.com/patents/US20120123956 US Patent App. 12/944,868.

[20] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and simula-

tion of a fair queueing algorithm. In ACM SIGCOMM.

[21] Arnoud V den Boer. 2014. Dynamic pricing with multiple products and partially

specified demand distribution. Mathematics of operations research 39, 3 (2014),

863–888.

[22] Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A

Wilkens. 2011. Near optimal online algorithms and fast approximation algo-

rithms for resource allocation problems. In EC.
[23] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2018. Allocation Problems in Ride-Sharing Platforms: Online Matching with

Offline Reusable Resources. In AAAI.
[24] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2018. Assigning Tasks to Workers Based on Historical Data: Online Task

Assignment with Two-sided Arrivals. In AAMAS. 318–326.
[25] Jon Feldman, Nitish Korula, Vahab Mirrokni, S Muthukrishnan, and Martin Pál.

2009. Online ad assignment with free disposal. InWINE.
[26] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-resource fair

queueing for packet processing. ACM SIGCOMM (2012).

[27] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2013. Choosy: Max-min

fair sharing for datacenter jobs with constraints. In ACM ECCS.
[28] R. Guedes, V. Furtado, and T. Pequeno. 2014. Multiagent models for police

resource allocation and dispatch. In 2014 IEEE Joint Intelligence and Security
Informatics Conference.

[29] Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. 2011.

Online stochastic weighted matching: Improved approximation algorithms. In

WINE.
[30] Elad Hazan, Shmuel Safra, and Oded Schwartz. 2006. On the complexity of

approximating k-set packing. computational complexity 15, 1 (2006).

[31] J. L. Hellerstein. 2010. Google Cloud Trace Dataset. (2010). https://github.com/

google/cluster-data

[32] Chien-Ju Ho and Jennifer Wortman Vaughan. 2012. Online Task Assignment in

Crowdsourcing Markets.. In AAAI.

[33] Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large

Scale Real-time Ridesharing with Service Guarantee on Road Networks. VLDB
Endow. 7, 14 (2014).

[34] Patrick Jaillet and Xin Lu. 2013. Online stochastic matching: New algorithms

with better bounds. Mathematics of Operations Research 39, 3 (2013).

[35] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. 2013. Multiresource

allocation: Fairness-efficiency tradeoffs in a unifying framework. IEEE/ACM TON
(2013).

[36] Ian Kash, Ariel D Procaccia, and Nisarg Shah. 2014. No agent left behind: Dynamic

fair division of multiple resources. JAIR (2014).

[37] Thomas Kesselheim, Andreas Tönnis, Klaus Radke, and Berthold Vöcking. 2014.

Primal beats dual on online packing LPs in the random-order model. In STOC.
[38] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordóñez,

and Milind Tambe. 2009. Computing optimal randomized resource allocations

for massive security games. In AAMAS.
[39] Sang M. Lee, Lori Sharp Franz, and A. James Wynne. 1979. Optimizing State

Patrol Manpower Allocation. Journal of the Operational Research Society 30, 10

(01 Oct 1979).

[40] S. Ma, Y. Zheng, and O. Wolfson. 2013. T-share: A large-scale dynamic taxi

ridesharing service. In ICDE.
[41] Will Ma. 2014. Improvements and generalizations of stochastic knapsack and

multi-armed bandit approximation algorithms. In SODA.
[42] Will Ma and David Simchi-Levi. 2017. Online resource allocation un-

der arbitrary arrivals: Optimal algorithms and tight competitive ratios.

http://dx.doi.org/10.2139/ssrn.2989332 (2017).
[43] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. 2012. Online

stochastic matching: Online actions based on offline statistics. MOR (2012).

[44] Emma Pierson, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Vignesh

Ramachandran, Cheryl Phillips, and Sharad Goel. 2017. A large-scale analysis

of racial disparities in police stops across the United States. arXiv preprint
arXiv:1706.05678 (2017).

[45] Karthik Abinav Sankararaman and Aleksandrs Slivkins. 2018. Combinatorial

Semi-Bandits with Knapsacks. In AIStats.
[46] Robert P Shumate and Richard F Crowther. 1966. Quantitative methods for

optimizing the allocation of police resources. J. Crim. L. Criminology & Police Sci.
57 (1966).

[47] Yaron Singer and Manas Mittal. 2013. Pricing mechanisms for crowdsourcing

markets. InWWW.

[48] Adish Singla and Andreas Krause. 2013. Truthful incentives in crowdsourcing

tasks using regret minimization mechanisms. InWWW.

[49] Aleksandrs Slivkins and Jennifer Wortman Vaughan. 2014. Online decision mak-

ing in crowdsourcing markets: Theoretical challenges. ACM SIGecom Exchanges
12, 2 (2014).

[50] Ashwin Subramanian, G Sai Kanth, Sharayu Moharir, and Rahul Vaze. 2015.

Online incentive mechanism design for smartphone crowd-sourcing. In WiOPT.
[51] Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen, Jieping Ye, and

Ke Xu. 2017. Flexible Online Task Assignment in Real-time Spatial Data. Proc.
VLDB Endow. (2017).

[52] Xinshang Wang, Van-Anh Truong, and David Bank. 2018. Online advance

admission scheduling for services with customer preferences. arXiv preprint
arXiv:1805.10412 (2018).

[53] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. 2014. Adaptive

resource allocation for wildlife protection against illegal poachers. In AAMAS.
[54] Xing Yi, James Allan, and W Bruce Croft. 2007. Matching resumes and jobs based

on relevance models. In SIGIR.
[55] Yue Yin, Haifeng Xu, Jiarui Gan, Bo An, and Albert Xin Jiang. 2015. Computing

Optimal Mixed Strategies for Security Games with Dynamic Payoffs.. In IJCAI.
[56] Dong Zhao, Xiang-Yang Li, and Huadong Ma. 2014. How to crowdsource tasks

truthfully without sacrificing utility: Online incentive mechanisms with budget

constraint. In INFOCOM.

Session 6E: Agent Cooperation 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

1689

https://www.google.com/patents/US20120123956
https://www.google.com/patents/US20120123956
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 Preliminaries
	3 Other Related Work
	4 Algorithms
	5 Main Results and Techniques
	6 Experiments
	6.1 Additional Experiments for the Public Safety Application

	7 Conclusions & Future Research
	References

