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ABSTRACT

Cellular traffic offloading is nowadays an important problem
in mobile networking. Since the offloading resource owners
(agents) are self-interested and have private costs, it is highly
challenging to design procurement mechanisms that moti-
vate agents to reveal their true costs and achieve guaranteed
performance under the constraint of a strict budget. In this
paper, we model cellular traffic offloading as a multi-unit
budget feasible procurement auction design problem with di-
minishing return valuations. We design a novel greedy-based
randomized mechanism, and prove it is budget-feasible, truth-
ful, individually rational and a (3 + 2 ln𝑁)-approximation,
where 𝑁 is the total number of available resource units.
We also propose a deterministic mechanism which achieves

(2 + ln𝑁 +
√︀

2 + 3 ln𝑁 + ln2 𝑁) - approximation. We prove
no budget-feasible and truthful mechanism can do better
than ln𝑁 -approximation in our setting, thus our mechanis-
m approaches the optimal to a constant factor. In addition
to solving the cellular traffic offloading problem, our work
successfully extends solvable valuation class of greedy-based
multi-unit budget-feasible mechanism with performance guar-
antees from the concave-additive valuations to more general
local diminishing return valuations.
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1 INTRODUCTION

With the proliferation of smart mobile devices and applica-
tions, the global mobile data traffic keeps rapidly growing.
According to a white paper recently updated by Cisco [8],
global mobile data traffic grew 63% in 2016, and it will contin-
ue to increase another 7-fold between 2016 and 2021. Such a
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massive amount of mobile traffic would certainly deteriorate
existing cellular networks’ service quality if the traffic is not
handled properly.

Compared with updating the cellular network’s infrastruc-
ture or building more towers, offloading part of cellular traffic
through existing alternative wireless networks such as fem-
tocells, WiFi, etc. eases the burden of cellular networks and
enhance users’ experience in a timely and economical man-
ner [3, 10, 20, 21], and has already been widely applied in
practice. According to Cisco [8], 60% of total mobile data
traffic was offloaded onto the fixed network through Wi-Fi
or femtocell in 2016. In total, 10.7 exabytes of mobile data
traffic were offloaded onto the fixed network each month.
Therefore, it is of great application value to study how to
optimally offload the cellular traffic.

Unlike the macrocells which are owned by cellular service
providers (CSPs), femtocell devices or WiFi hotspots are
often owned by third-party entities (or be called agents) such
as schools, restaurants, residences, etc. Shifting cellular traffic
to these agents requires to consume their own resources (e.g.,
bandwidth, data quota, electricity, etc.), thus the agents need
to be well motivated, and their costs, which are privately
known by themselves, should be well compensated [21]. Under
such circumstances, finding a good offloading solution is no
longer a conventional optimization problem. Instead, what
we need is a well-designed procurement auction mechanism,
that generates an optimized procurement solution which
approximates the optimal one in an ideal omniscient scenario.

In this paper, we consider a general setting that the macro-
cell of a CSP is divided into several non-overlapping small
regions. Each agent is located inside one region and provides
offloading resources for this region. The CSP, given a fixed
budget, aims to purchase resource units from the agents to
optimally mitigate the overloading issue of the macrocell
base station, which can be formalized as optimizing a spe-
cial diminishing return demand valuation function [6], which
captures a fundamental principle of economics [17] and is
widely adopted in modeling economic systems. Clearly, the
required mechanism belongs to the class of budget feasible
mechanisms [2, 4–7, 18], and can be further characterized
with the following features:

1) Multi-unit procurement auction. Bidders can sell multi-
ple units of a homogeneous item with privately known
costs;

2) Multi-submarket and a shared budget. The market is
divided into several submarkets, and a global budget
is shared between all the submarkets;
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3) Symmetric submodular demand valuation function for
each submarkets. For each region, the marginal value
of a purchased item is non-increasing.

As far as we know, although there is some closely relat-
ed work, our problem in the setting above has not been
solved yet. We emphasize that our problem is highly chal-
lenging since solving it requires to effectively correlate all
sub-markets, strictly bound the total payment under a fixed
budget, and achieve a guaranteed performance lower bound
compared with the optimal solution in the ideal case at the
same time. We successfully devise a novel approach that copes
well with these challenges and achieves good performance in
the multi-region multi-unit procurement auction. The main
contributions of this paper can be summarized as follows:

1) We model the valuation of offloading resources pur-
chased among the regions as a local diminishing return
(ldr) function, which intuitively captures optimality
in each region and fairness between the regions.

2) We propose a greedy-based randomized mechanism,
and prove it is budget-feasible, truthful, individually
rational and (3 + 2 ln𝑁) - approximation (𝑁 equals
the total number of resource units in the market).

3) We also propose a deterministic mechanism, which
is proved to be budget-feasible, truthful, individual

rational and (2 + ln𝑁 +
√︀

2 + 3 ln𝑁 + ln2 𝑁) - ap-
proximation.

4) We prove no budget-feasible and truthful mechanism
can do better than ln𝑁 -approximation in our setting,
thus our mechanism approaches the optimal to a con-
stant factor.

5) We extend solvable valuation class of greedy-based
multi-unit budget-feasible mechanism with performance
guarantees from the concave-additive valuations to
more general local diminishing return valuations.

2 RELATED WORK

Most of the pioneering studies on designing incentive mecha-
nisms for cellular traffic offloading, e.g., [10, 16, 22, 23], focus
on the settings where the underlying traffic or offloading
demands are known to the CSP or can be estimated precisely
and efficiently, and the optimization objective is social wel-
fare maximization. Basically, for these settings the celebrated
Vickrey-Clarke-Groves (VCG) mechanism [9, 13, 19] is a per-
fect solution. The problem of maximizing CSP’s capacity gain
under the constraint of a strict budget was firstly studied
by [21]. In this work the offloading resources owned by each
agent can an be continuously divided and sold. The objective
of maximizing the weighted sum of the capacity gain of all the

regions was studied in depth, and a (𝛼−1)𝑤𝑚𝑖𝑛
4𝛼

-approximation
mechanism, where 𝛼 is the global bidder dominance and 𝑤𝑚𝑖𝑛

is the minimum of all region’s weights, was proposed. Intu-
itively, this mechanism is based on properly dividing the
budget among the regions, and then run a sub-mechanism
independently in each region. The sub-mechanisms was de-
signed based on the random sampling and profit extraction
framework proposed in [1].

Our setting has a lot in common with that studied in [21].
However, there are two major differences:

1) The offloading resources for sale in our setting are
divided into fixed-sized atomic units instead of being
continuously dividable;

2) The valuation in each region is symmetric submodular
instead of being additive.

For our setting, we adopt the proportional share allocation
rule [18], which is the core of budget-feasible mechanisms
for maximizing submodular demand valuation functions, to
design a greedy-based mechanism that selects units from
different regions with a global view, instead of performing
random sampling auctions independently in each submarkert.

Budget feasible mechanism design [2, 4–7, 18] is an impor-
tant branch of nowadays prior-free optimal mechanism design
research, which aims to optimize payment related objectives
in auctions without the availability of the prior knowledge
of the agents’ type distribution. Multi-unit budget feasible
mechanism design is a relatively new setting in this area that
has been investigated by [6]. They studied a series of nested
valuation classes:

bounded knapsack ⊆ concave additivity ⊆ diminishing
return ⊆ sub-modularity ⊆ sub-additivity

Their results demonstrate the existence of a greedy-based
randomized 4(1 + ln𝑛)-approximation mechanism for con-
cave additive valuations. However, the existence of greedy
algorithms to construct budget-feasible mechanism for larger
classes of valuations is left open. Therefore, they turned to
a different approach, random sampling[4, 12], to propose a

𝑂( log2 𝑛
log log𝑛

)-approximation mechanism for sub-additive valua-

tions. As will be shown in our paper, the valuation function
in our setting, which we called local diminishing return (ldr),
is actually a class located between concave additivity and
diminishing return. We can demonstrate that, the scope of
valuation functions that can be handled by greedy-based
mechanisms can be at least extended to include the ldr class.
Moreover, it is necessary to notice that, instead of to find
mechanism that are budget-feasibly in expectation (as in [6]),
we aim to find mechanism that is strict budget-feasible.

3 PRELIMINARIES

3.1 Cellular traffic offloading

3.1.1 Agents, units and regions. In cellular traffic offload-
ing the CSP gains extra network capacity by purchasing
offloading resources (or service) from 𝑛 agents in the macro-
cell sector, denoted as [𝑛] = {1, ..., 𝑛}. We assume each agent
𝑖 ∈ [𝑛] has

∙ a capacity 𝜎𝑖 ∈ N, representing the maximal number
of resource units she can provide, and
∙ a unit cost 𝑐𝑖 ∈ R+, representing her cost of providing
each resource unit.

The resource units owned by each agent 𝑖 ∈ [𝑛] can be de-
noted as (𝑖, 1), (𝑖, 2), ..., (𝑖, 𝜎𝑖), where (𝑖, 𝑗) refers to agent
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𝑖’s 𝑗-th unit. Hence, the total number resource units in the
system is 𝑁 =

∑︀𝑛
𝑖=1 𝜎𝑖. Note that, femtocells have a much

smaller coverage compared with macrocell base stations, of-
floading resources purchased from one femtocell is not able
to handle all traffic from the entire macrocell. To deal with
this practical issue, we can divide the entire sector into 𝑚
non-overlapping regions, denoted as [𝑚] = {1, ...,𝑚}, each of
which is fully covered by the femtocells that reside in it. So
from a region’s point of view, there is no difference between
the units purchased from different agents inside it.

We denote an allocation as 𝒜 = (𝑎1, ..., 𝑎𝑛) where each
𝑎𝑖 ∈ {0, 1, ..., 𝜎𝑖} is the number of units obtained from agent
𝑖. We can see 𝒜 as the set {(𝑖, 𝑗) : 𝑖 ∈ [𝑛], 𝑗 ≤ 𝑎𝑖}, that
is, intuitively we assume each agent’s units will always be
considered in their naming order. Specially, we use 𝑒𝑖 to
denote the allocation where 𝑎𝑖 = 1 and 𝑎𝑗 = 0 for all 𝑗 /∈ 𝑖.

Definition 3.1 (capacity gain). The capacity gain of a re-
gion 𝑗 ∈ [𝑚], denoted as 𝑠𝑗(𝒜), equals to the total units
purchased within this region.

We can define a function 𝑟 : [𝑛]→ [𝑚], and let 𝑟(𝑖) denote
the region agent 𝑖 belongs to, and then the agents in region 𝑗
can be denoted as 𝑅𝑗 = {𝑖 ∈ [𝑛] : 𝑟(𝑖) = 𝑗}. Hence, we have

𝑠𝑗(𝒜) =
∑︁
𝑖∈𝑅𝑗

𝑎𝑖. (1)

3.1.2 Local diminishing return (ldr) valuation. The aim
of cellular traffic offloading is to mitigate the overloading
issue of the base station which may be unevenly distributed
in the macrocell. For each region 𝑗, we can specify a weight
𝑤𝑗 ∈ 𝑅+, which intuitively represents the value obtained by
using a resource unit in this region to offload some data traffic.
So, as the number of units obtained in a region increases,
the marginal value of the 𝑖th unit is 𝑤𝑗 · Pr(𝑑𝑗 ≥ 𝑖), where
𝑑𝑗 is a random variable representing the resource demand in
region 𝑗, and Pr(𝑑𝑗 ≥ 𝑖) is the probability that the 𝑖th unit

will be used. We denote Pr(𝑑𝑗 ≥ 𝑖) as 𝛿𝑗𝑖 . Therefore, given
an allocation 𝒜, the obtained value in region 𝑗 is

𝑣𝑗(𝒜) =
𝑠𝑗(𝒜)∑︁
𝑖=1

𝑤𝑗𝛿
𝑗
𝑖 = 𝑤𝑗 ·

𝑠𝑗(𝒜)∑︁
𝑖=1

𝛿𝑗𝑖 (2)

where 1 ≥ 𝛿𝑗1 ≥ 𝛿𝑗2 ≥ 𝛿𝑗3 ≥ · · · ≥ 0 is a sequence of nonneg-
ative real numbers upper bounded by 1 (we assume they

are given in advance).
∑︀𝑠𝑗(𝒜)

𝑖=1 𝛿𝑗𝑖 can be understood as the
expected offloading (amount) in region 𝑗.

Definition 3.2 (allocation valuation function). The value
of allocation 𝒜, denoted as 𝑣(𝒜), is the sum of the values
obtained in all regions, i.e.,

𝑣(𝒜) =
𝑚∑︁

𝑗=1

𝑠𝑗(𝒜)∑︁
𝑖=1

𝑤𝑗𝛿
𝑗
𝑖 =

𝑚∑︁
𝑗=1

𝑤𝑗

𝑠𝑗(𝒜)∑︁
𝑖=1

𝛿𝑗𝑖 (3)

Given an allocation 𝒜 = (𝑎1, 𝑎2, ..., 𝑎𝑖, ..., 𝑎𝑛), adding one
extra resource unit (𝑖, 𝑗) of agent 𝑖 will result in a new alloca-
tion 𝒜+ 𝑒𝑖 = (𝑎1, 𝑎2, ..., 𝑎𝑖 +1, ..., 𝑎𝑛), in which the expected

offloading in the system increases by 𝑚𝒜(𝑖, 𝑗) = 𝛿
𝑟(𝑖)

𝑠𝑟(𝑖)(𝒜)+1 in

region 𝑟(𝑖). We call 𝑚𝒜(𝑖, 𝑗) as unit (𝑖, 𝑗)’s marginal expected
offloading. Moreover, in this case the value will increase by
𝑣(𝒜+ 𝑒𝑖)− 𝑣(𝒜) = 𝑚𝒜(𝑖, 𝑗) ·𝑤𝑟(𝑖), which we refer to as unit
(𝑖, 𝑗)’s marginal value.

Definition 3.3 (diminishing return [6]). A allocation val-
uation function 𝑣 is called a diminishing return function, if
for any 𝒜 and 𝒜′ such that 𝑎𝑖 ≤ 𝑎′

𝑖 for each 𝑖, and for any
agent 𝑗, we have 𝑣(𝒜+ 𝑒𝑗)− 𝑣(𝒜) ≥ 𝑣(𝒜′ + 𝑒𝑗)− 𝑣(𝒜′).

It is easy to see that, for any 𝒜 and 𝒜′ such that 𝑎𝑖 ≤ 𝑎′
𝑖

for each 𝑖, and for any agent 𝑗,

𝑣(𝒜+ 𝑒𝑗)− 𝑣(𝒜) = 𝛿
𝑟(𝑗)

𝑠𝑟(𝑗)(𝒜)+1 · 𝑤𝑟(𝑗) ≥ 𝛿
𝑟(𝑗)

𝑠𝑟(𝑗)(𝒜′)+1 · 𝑤𝑟(𝑗)

= 𝑣(𝒜′ + 𝑒𝑗)− 𝑣(𝒜′) (4)

According to the above definition, 𝑣(·) belongs to the di-
minishing return class. It actually forms a proper subset
of the diminishing return class, since each unit’s marginal
value is only locally depended on the allocation in her region.
Moreover, when there is at most one agent in each region
it collapse to the class of concave additivity. We call this
valuation class as local diminishing return (ldr) functions
and formally defined it as follows.

Definition 3.4 (local diminishing return, ldr). A local
diminishing return function 𝑣 is a diminishing return function
where the agents are partitioned into disjointed sets (let 𝑟(𝑖)
denote the set agent 𝑖 belongs to), and for any allocation
𝒜 and 𝒜′, and any agent 𝑗, we have 𝑣(𝒜 + 𝑒𝑗) − 𝑣(𝒜) =
𝑣(𝒜′ + 𝑒𝑗)− 𝑣(𝒜′) if 𝑎𝑖 = 𝑎′

𝑖 for all 𝑖 such that 𝑟(𝑖) = 𝑟(𝑗).

3.2 Economic model

3.2.1 The optimization problem. We assume the agents are
rational in the sense of game theory, that is, they always try
to maximize their utilities and need to be well-motivated to
provide their offloading resources. We also assume the actual
value of the unit cost 𝑐𝑖 are each agent 𝑖’s private information.
As usual, we also refer to 𝑐𝑖 as agent 𝑖’s type. The type space
of agent 𝑖, Θ𝑖 = R+, denoting agent 𝑖’s all possible types, is
public information. The CSP is given a fixed budget 𝐵 ∈ R+,
which represents the maximum amount of money she can
spend. The problem of the CSP is to decide how many units
should be purchased from each agent, i.e., an allocation 𝒜,
to maximize the valuation 𝑣(𝒜). As the type of each agent is
only known by herself, this problem is not an optimization
problem in the conventional sense.

3.2.2 Formalize it as an auction design problem. Fortunate-
ly, methodologies from algorithmic mechanism design can be
adopted for this setting: The CSP can run a procurement
auction with all the agents. As the seller, each agent submits
a bid 𝑏𝑖 ∈ Θ𝑖 to the buyer. Based on all agents’ bids, the
buyer determines the auction’s outcome using a predefined
auction mechanismℳ = (𝑥,𝑝) where

∙ 𝑥 is an allocation function. For each bid vector 𝑏 ∈
Θ1 × · · · ×Θ𝑛, 𝑥(𝑏) = (𝑎1, ..., 𝑎𝑛) is an allocation;
∙ 𝑝 is a payment function. For each bid vector 𝑏 ∈ Θ1 ×
· · · ×Θ𝑛, 𝑝(𝑏) is the payment vector to the agents.
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We use 𝑥𝑖(𝑏) and 𝑝𝑖(𝑏) to denote agent 𝑖’s allocation and
payment respectively. Obviously, we have 𝑥𝑖(𝑏) ∈ {0, ..., 𝜎𝑖}
and 𝑝𝑖(𝑏) ∈ {0} ∪R+ for all 𝑖 ∈ [𝑛]. We call agent 𝑖 a winner
if it sells some units to the buyer (i.e., 𝑥𝑖(𝑏) > 0) and receives
a positive payment (i.e., 𝑝𝑖(𝑏) > 0) according to the outcome
(𝑥(𝑏),𝑝(𝑏)).

Definition 3.5 (utility). The utility of agent 𝑖 for bid vector
𝑏, denoted as 𝑢𝑖(𝑏), is defined as

𝑢𝑖(𝑏) = 𝑝𝑖(𝑏)− 𝑐𝑖𝑥𝑖(𝑏) (5)

Intuitively, the utility of each agent 𝑖 is defined as the
difference between agent 𝑖’s received payment and agent 𝑖’s
cost. Note that, we have assume that the agents always try
to maximize their utilities.

Finally, the required properties of our aiming mechanism
can be formalized as follows:

∙ Budget feasible (bf), i.e., the total payment of the
mechanism is upper bounded by a given budget:

𝑛∑︁
𝑖=1

𝑝𝑖(𝑏) ≤ 𝐵 for all 𝑏 ∈ Θ;

∙ Truthful, i.e., each agent maximizes her utility by bid-
ding her true type, regardless of the types bid by others:

𝑢𝑖(𝑐𝑖, 𝑏−𝑖) ≥ 𝑢𝑖(𝑏𝑖, 𝑏−𝑖) for all (𝑏𝑖, 𝑏−𝑖) ∈ Θ;

A mechanism that is a randomization over truthful
mechanisms is called universally truthful.
Note that, we seek deterministic mechanisms that are
truthful, or randomized mechanisms that are univer-
sally truthful.
∙ Individually rational (ir), i.e., each agent 𝑖’s utility
is non-negative. If truthfulness is satisfied, it only re-
quires:

𝑢𝑖(𝑐) ≥ 0;

∙ Tractable and performance guaranteed, i.e., the com-
putation of the allocation and payment function is
tractable, and there is some theoretical performance
lower bound.

4 A RANDOMIZED MECHANISM

By generalizing Myerson’s famous characterization for truth-
ful single-parameter auctions [14], the following result for
procurement auctions has been proved.

Lemma 1. [11] A single-parameter procurement auction
(𝑥,𝑝) is truthful, if and only if for any agent 𝑖 and bids of
other agents 𝑏−𝑖 fixed,

1) 𝑥𝑖(𝑏𝑖) is monotone non-increasing; and

2) 𝑝𝑖(𝑏𝑖) = 𝑥𝑖(𝑏𝑖) · 𝑏𝑖 +
∫︀ +∞
𝑏𝑖

𝑥𝑖(𝑧)𝑑𝑧.

For the multi-unit case considered in our setting, the following
result can be further derived.

Corollary 2. A single-parameter multi-unit procurement
auction (𝑥,𝑝) is truthful, if and only if for any agent 𝑖 and
bids of other agents 𝑏−𝑖 fixed,

1) 𝑥𝑖(𝑏𝑖) is monotone non-increasing; and

2) 𝑝𝑖(𝑏𝑖) =
∑︀𝑥𝑖(𝑏𝑖)

𝑗=1 𝑡𝑗 , where 𝑡𝑗 = inf{𝑏𝑖 : 𝑥𝑖(𝑏𝑖) < 𝑗}, i.e.,
the threshold bid of agent 𝑖 for unit (𝑖, 𝑗) being selected
by the mechanism.

Proof. 𝑥𝑖(𝑏𝑖) being monotone non-increasing is directly
followed by lemma 1. Let 𝑘 = 𝑥𝑖(𝑏𝑖) and we have

𝑝𝑖(𝑏𝑖) = 𝑘𝑏𝑖 +

∫︁ 𝑡𝑘

𝑏𝑖

𝑘𝑑𝑧 +

∫︁ 𝑡𝑘−1

𝑡𝑘

𝑘 − 1𝑑𝑧 + · · ·+
∫︁ 𝑡1

𝑡2

1𝑑𝑧

= 𝑡𝑘 + 𝑡𝑘−1 + · · ·+ 𝑡1 (6)

Therefore, 𝑝𝑖(𝑏𝑖) is the sum of agent 𝑖’s threshold bid of each
of her sold unit. �

Intuitively, for the multi-unit procurement auction setting
considered in this paper, to design a truthful mechanism, we
can focus on finding out a monotone allocation, by which the
number of units purchased from each agent 𝑖 decreases as 𝑏𝑖
increases. Then, the payment to agent 𝑖 is just the sum of
the threshold bid of each unit she sold out.

4.1 A monotone allocation function

Our mechanism is based on sorting all the 𝑁 units (𝑖, 𝑗)
according to marginal value per cost (mvpc) decreasingly,
with ties broken lexicographically, first by 𝑖 and then by 𝑗.
Notice that, we will use this tie breaking rule as default.
The ordered list can be denoted as ℒ = ⟨(𝑖1, 𝑗1), ..., (𝑖𝑁 , 𝑗𝑁 )⟩,
where for each ℓ ∈ [𝑁 ], (𝑖ℓ, 𝑗ℓ) is the unit that selected in
stage ℓ. Let 𝒜ℓ−1 be the set {(𝑖1, 𝑗1), ..., (𝑖ℓ−1, 𝑗ℓ−1)}, then

(𝑖ℓ, 𝑗ℓ) ∈ arg max
(𝑖,𝑗)/∈𝒜ℓ−1

𝑚𝒜ℓ−1(𝑖, 𝑗)𝑤𝑟(𝑖)

𝑏𝑖
(7)

For each (𝑖ℓ, 𝑗ℓ) in the list, we use 𝑚+
ℓ , 𝑤

+
ℓ and 𝑏+ℓ as abbre-

viations for 𝑚𝒜ℓ−1(𝑖ℓ, 𝑗ℓ), 𝑤𝑟(𝑖ℓ) and 𝑏𝑖ℓ respectively.
Now, we can specify a greedy-based allocation function as

follows. Basically, this function generalizes the proportional
share allocation rule [18] to the multi-unit setting considered
in this paper: firstly, it reorders all the units by decreasing
marginal value per cost, then it picks up all the units with
cost bid no higher than their marginal value proportional
share of the given budget 𝛾𝐵. Note that, 0 ≤ 𝛾 ≤ 1 is a
constant which will be used in bounding the total payment
within the given budget.

Greedy-LDR(𝑆,𝐵, 𝛾)

1. Order all the units of the agents in 𝑆 according to
mvpc decreasingly, to the order list
ℒ = ⟨(𝑖1, 𝑗1), ..., (𝑖𝑁 , 𝑗𝑁 )⟩;

2. Let 𝑘 be the last position in ℒ satisfying

𝑏+𝑘
𝑚+

𝑘 𝑤
+
𝑘

≤ 𝛾𝐵∑︀
ℓ≤𝑘 𝑚

+
ℓ 𝑤

+
ℓ

;

3. Pick up the first 𝑘 units in ℒ, that is, output
𝒜 = (𝑎1, ..., 𝑎𝑛) where 𝑎𝑖 = |{ℓ : ℓ ≤ 𝑘 and 𝑖ℓ = 𝑖}|.
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For any two units (𝑖, ℎ) and (𝑗, 𝑘), we denote as (𝑖, ℎ) ≺
(𝑗, 𝑘), if (𝑖, ℎ) is ranked ahead of (𝑗, 𝑘) (in ℒ) . Then, we can
obtain the following result which depicts the relative position
of the units of any two agents in the same region.

Proposition 3. For any 2 agents 𝑖, 𝑗 in the same region,

1) If 𝑏𝑖 < 𝑏𝑗 then (𝑖, ℎ) ≺ (𝑗, 𝑘) for any ℎ, 𝑘.
2) If 𝑏𝑖 = 𝑏𝑗 then (𝑖, ℎ) ≺ (𝑗, 𝑘) for any ℎ, 𝑘 iff 𝑖 < 𝑗.

Proof. 1) Assume 𝑏𝑖 < 𝑏𝑗 and there are ℎ ∈ [𝜎𝑖], 𝑘 ∈ [𝜎𝑗 ]
satisfying (𝑗, 𝑘) ≺ (𝑖, ℎ). So,

𝑚𝒜(𝑗, 𝑘)𝑤𝑟(𝑗)

𝑏𝑗
≥

𝑚𝒜(𝑖, ℎ)𝑤𝑟(𝑖)

𝑏𝑖
, (8)

where 𝒜 are the units ordered before (𝑗, 𝑘). Since 𝑟(𝑖) = 𝑟(𝑗),
we have 𝑚𝒜(𝑗, 𝑘) = 𝑚𝒜(𝑖, ℎ) and therefore 𝑏𝑖 ≥ 𝑏𝑗 , and this
is obviously a contradiction!

2) Trivial due to the tie breaking rule. �

The above result implies the units of different agents from
the same region never intersect with each other in ℒ. They are
scattered along ℒ from left to right in the order of increasing
cost bid and break ties by increasing naming order.

Proposition 4. The marginal value of a unit (𝑖, 𝑗) de-
pends only on agent 𝑖’s local rank on cost bid.

Proof. Given a region ℎ ∈ [𝑚], we sort the agents 𝑖 in
this region as 𝑖ℎ1 , ..., 𝑖

ℎ
|𝑅ℎ| in the order of increasing cost bid,

breaking ties by 𝑖. According to proposition 3, an arbitrary
unit (𝑖ℎ𝑘 , 𝑗) has ∆ =

∑︀𝑘−1
ℓ=1 𝜎𝑖ℎ

ℓ
+ 𝑗 − 1 units from the same

region ranked before it in ℒ. Therefore its marginal value is

𝛿
𝑟(𝑖ℎ𝑘)

Δ+1 𝑤𝑟(𝑖ℎ
𝑘
). Clearly, it only depends on the local rank 𝑘. �

Afterward, based on the above 2 results, we can prove the
monotonous of the allocation.

Lemma 5. Greedy-LDR(𝑆,𝐵, 𝛾) is monotone.

Proof. For any unit (𝑖𝑠, 𝑗𝑠) in the winning set, we can
divide the rest units in the system into 4 sets:

1) 𝑆−
1 , the units in region 𝑟(𝑖𝑠) ranked before (𝑖𝑠, 𝑗𝑠);

2) 𝑆+
1 , the units in region 𝑟(𝑖𝑠) ranked after (𝑖𝑠, 𝑗𝑠);

3) 𝑆−
0 , the units outside region 𝑟(𝑖𝑠) ranked before (𝑖𝑠, 𝑗𝑠);

4) 𝑆+
0 , the units outside region 𝑟(𝑖𝑠) ranked after (𝑖𝑠, 𝑗𝑠).

Now we suppose agent 𝑖𝑠 bids a cost 𝑏′ ≤ 𝑏+𝑠 , obtains a
marginal expected offloading 𝑚′ and the above 4 sets becomes

𝑆−
1 , 𝑆+

1 , 𝑆−
0 and 𝑆+

0 respectively. It is easy to show that no
unit (𝑖ℓ, 𝑗ℓ) from 𝑆+

1 can be moved to the front of (𝑖𝑠, 𝑗𝑠):

∙ If 𝑖ℓ = 𝑖𝑠, i.e., they belong to the same agent, we still
have (𝑖𝑠, 𝑗𝑠) ≺ (𝑖ℓ, 𝑗ℓ) because of the tie breaking rule,
∙ otherwise, we have 𝑏+ℓ ≥ 𝑏+𝑠 > 𝑏′, and by proposition 3,
we have (𝑖𝑠, 𝑗𝑠) ≺ (𝑖ℓ, 𝑗ℓ).

That is, we have 𝑆−
1 ⊆ 𝑆−

1 , and therefore 𝑚′ ≤ 𝑚+
𝑠 . Since

the marginal value of all the units in 𝑆−
0 ∪ 𝑆+

0 are trivially
invariant, no unit (𝑖ℎ, 𝑗ℎ) in 𝑆+

0 can be moved to the front

of (𝑖𝑠, 𝑗𝑠) , since the weighted marginal value rate of (𝑖ℎ, 𝑗ℎ)
is invariant, and

𝑚+
ℎ𝑤

+
ℎ

𝑏+ℎ
≤ 𝑚+

𝑠 𝑤
+
𝑠

𝑏+𝑠
<

𝑚′𝑤+
𝑠

𝑏′
(9)

Thus we also have 𝑆−
0 ⊆ 𝑆−

0 , and moreover

𝑏′

𝑚′𝑤+
𝑠

<
𝑏+𝑠

𝑚+
𝑠 𝑤

+
𝑠

≤ 𝛾𝐵∑︀
ℓ≤𝑠 𝑚

+
ℓ 𝑤

+
ℓ

=
𝛾𝐵∑︀

(𝑖ℓ,𝑗ℓ)∈𝑆−
1 ∪𝑆−

0 ∪{(𝑖𝑠,𝑗𝑠)}
𝑚+

ℓ 𝑤
+
ℓ

=
𝛾𝐵

𝑤+
𝑠 ·

∑︀|𝑆−
1 |+1

𝑗=1 𝛿
𝑟(𝑖𝑠)
𝑗 +

∑︀
(𝑖ℓ,𝑗ℓ)∈𝑆−

0
𝑚+

ℓ 𝑤
+
ℓ

(10)

≤ 𝛾𝐵

𝑤+
𝑠 ·

∑︀|𝑆−
1 |+1

𝑗=1 𝛿
𝑟(𝑖𝑠)
𝑗 +

∑︀
(𝑖ℓ,𝑗ℓ)∈𝑆−

0
𝑚+

ℓ 𝑤
+
ℓ

Therefore, according the specification of function Greedy-
LDR(𝑆,𝐵, 𝛾), each unit will still be allocated after biding a
lower cost, and thus monotonous hold. �

4.2 Finding the threshold payment

The algorithm for computing the threshold payment of unit
(𝑖, 𝑗), which will be used as a key building block of our
payment determination algorithm, can be specified as follows:

TP(𝑖, 𝑗)

1. Order the agents in region ℎ = 𝑟(𝑖) as (𝑖ℎ1 , 𝑖
ℎ
2 , ..., 𝑖

ℎ
|𝑅ℎ|)

according to increasing cost bid, and let ℓ satisfy
𝑖ℎℓ = 𝑖.

2. Order all the units except that from agent 𝑖,
according to decreasing mvpc, as
ℒ′ = ⟨(𝑖′1, 𝑗′1), ..., (𝑖′𝑛−𝜎𝑖

, 𝑗′𝑛−𝜎𝑖
)⟩

3. for each 𝑗 ∈ [|𝑅ℎ|] ∖ {ℓ}, find out the first 𝑙𝑗 satisfying
𝑖′𝑙𝑗 = 𝑖ℎ𝑗 and the last 𝑟𝑗 satisfying 𝑖′𝑟𝑗 = 𝑖ℎ𝑗 ;

4. Find out the last position 𝑘′ s.t.
𝑐′
𝑘′

𝑤′
𝑘′ ·𝑚′

𝑘′
≤ 𝛾𝐵∑︀

ℓ≤𝑘′ 𝑚′
ℓ
𝑤′

ℓ

Let 𝑟0 = 0; 𝑘 = 𝑟ℓ−1 + 1; 𝜏 = 1; 𝑆 = ∅;
while 𝑘 ≤ 𝑘′ + 1 do
– if 𝑘 == 𝑙ℓ+𝜏 + 1 do 𝑘 = 𝑟ℓ+𝜏 + 1; 𝜏 ++;
– else
∆ =

∑︀ℓ−1
𝑗=1 𝜎𝑖ℎ𝑗

+
∑︀𝜏

𝑗=2 𝜎𝑖ℎ
ℓ+𝑗−1

+ 𝑗;

𝑡 = 𝑚𝑖𝑛{𝛿ℎΔ
𝑐′
𝑘′

𝑚′
𝑘′
, 𝛾𝐵𝛿ℎΔ · 1∑︀

𝑖≤𝑘−1 𝑚′
𝑘
+𝑟ℎΔ−𝑗+1+···+𝑟ℎΔ

};
𝑆 = 𝑆 ∪ {𝑡}; 𝑘 ++;

– endif
endwhile

5. return the max value in 𝑆.

Proposition 6. TP(𝑖, 𝑗) correctly returns the threshold
payment of unit (𝑖, 𝑗).
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Proof. TP(𝑖, 𝑗) firstly deletes all the units from agent
𝑖 and sorts the remaining units to sequence 𝑆′ according
to decreasing weighted marginal value rate (steps 1∼ 2).
Afterward, for each agent (ranked as 𝑗 by increasing cost) in
region 𝑟(𝑖), it marks the first and the last of its units in 𝑆′ by
𝑙𝑗 and 𝑟𝑗 respectively (step 3). According to proposition 3,
we have

𝑙1 ≤ 𝑟1 < 𝑙2 ≤ 𝑟2 < · · · < 𝑙ℓ−1 ≤ 𝑟ℓ−1

< 𝑙ℓ+1 ≤ 𝑟ℓ+1 < · · · < 𝑙|𝐽ℎ| ≤ 𝑟|𝐽ℎ| (11)

Therefore, we can search in the intervals

(𝑟ℓ−1, · · · , 𝑙ℓ+1], (𝑟ℓ+1, · · · , 𝑙ℓ+2], (𝑟ℓ+2, · · · , 𝑙ℓ+3], ...

and try to find out the highest value agent 𝑖 can bid to let unit
(𝑖, 𝑗) be placed next to one of the units in these intervals and
be picked up (steps 4 ∼ 5). Note that, by agent 𝑖’s current
bid, unit (𝑖, 𝑗) will be insert into the interval (𝑟ℓ−1, · · · , 𝑙ℓ+1]
and be picked up, and being insert into an interval in front
requires agent 𝑖 to bid lower (by proposition 4). So, the search
can start from interval (𝑟ℓ−1, · · · , 𝑙ℓ+1]. �

4.3 Bounding the total payment

First of all, we can try to establish an upper bound for each
winning unit’s threshold bid. Note that, for a winning unit
(𝑖, 𝑗), we use 𝑠𝑖𝑗 to refer to (𝑖, 𝑗)’s rank of marginal value in
the winning set.

Proposition 7. If (𝑖, 𝑗) wins, then 𝑏𝑖 ≤ 𝛾𝐵
𝑠𝑖𝑗

.

Proof. Given a bid vector 𝑏 = {𝑏1, ..., 𝑏𝑛}, for which the
mechanism picks up the first 𝑘 pairs, i.e., (𝑖1, 𝑗1), .., (𝑖𝑘, 𝑗𝑘),
in ℒ. We then reorder these 𝑘 pairs according to marginal val-
ues decreasingly, as (𝑖♯1, 𝑗

♯
1), .., (𝑖

♯
𝑘, 𝑗

♯
𝑘). We also write (𝑖♯ℓ, 𝑗

♯
ℓ)’s

marginal expected offloading, 𝑏
𝑖
♯
ℓ
and 𝑤

𝑟(𝑖
♯
ℓ
)
as 𝑚♯

ℓ, 𝑏
♯
ℓ and 𝑤♯

ℓ

for short respectively.
Assume that ∃ 1 ≤ 𝑠 ≤ 𝑘 satisfying 𝑏♯𝑠 > 𝛾𝐵

𝑠
, then

𝑏+𝑘
𝑚+

𝑘 𝑤
+
𝑘

≤ 𝛾𝐵∑︀
ℓ≤𝑘 𝑚

+
ℓ 𝑤

+
ℓ

=
𝛾𝐵∑︀

ℓ≤𝑘 𝑚
♯
ℓ𝑤

♯
ℓ

≤ 𝛾𝐵∑︀
ℓ≤𝑠 𝑚

♯
ℓ𝑤

♯
ℓ

≤ 𝛾𝐵

𝑠 ·𝑚♯
𝑠𝑤

♯
𝑠

(12)

Moreover, by the assumption we have 𝛾𝐵 < 𝑠 · 𝑏♯𝑠 and so

𝛾𝐵

𝑠 ·𝑚♯
𝑠𝑤

♯
𝑠

<
𝑏♯𝑠

𝑚♯
𝑠𝑤

♯
𝑠

(13)

Combining (7) and (8), we obtain

𝑏+𝑘
𝑚+

𝑘 𝑤
+
𝑘

<
𝑏♯𝑠

𝑚♯
𝑠𝑤

♯
𝑠

(14)

Now, we have arrived at a contradiction, since (𝑖𝑘, 𝑗𝑘) ≺
(𝑖♯𝑠, 𝑗

♯
𝑠) in ℒ, and thus can’t be picked up. �

Given the above result, it’s still unclear whether 𝑖 can bid
𝑏′ > 𝛾𝐵

𝑠𝑖𝑗
, and obtain a new rank 𝑠′𝑖𝑗 of marginal value, and

let (𝑖, 𝑗) still be selected. We can show that actually this is
impossible.

Lemma 8. The threshold bid for a unit (𝑖, 𝑗) in the winning

set, denoted as 𝜃𝑖𝑗, is upper bounded by 𝛾𝐵
𝑠𝑖𝑗

.

Proof. Assume ∃(𝑖♯𝑠, 𝑗♯𝑠), 𝑠 ≤ 𝑘 and 𝜃
𝑖
♯
𝑠𝑗

♯
𝑠
> 𝛾𝐵

𝑠
. So, agent

𝑖♯𝑠 can raise its bid to 𝑏′ satisfying 𝛾𝐵
𝑠

< 𝑏′ < 𝜃
𝑖
♯
𝑠𝑗

♯
𝑠
and still

let (𝑖♯𝑠, 𝑗
♯
𝑠) be picked up. Now suppose agent 𝑖♯𝑠 bid 𝑏′ and let

𝑚′ be the marginal value of unit (𝑖♯𝑠, 𝑗
♯
𝑠) in this case. Trivially,

we have 𝑚′ ≤ 𝑚♯
𝑠, and

𝑏′

𝑚′𝑤♯
𝑠

≥ 𝑏′

𝑚♯
𝑠𝑤

♯
𝑠

>
𝛾𝐵

𝑠 ·𝑚♯
𝑠𝑤

♯
𝑠

≥
𝑏+𝑘

𝑚+
𝑘 𝑤

+
𝑘

(15)

For any (𝑖♯ℓ, 𝑗
♯
ℓ) where ℓ < 𝑠 (the items used to be ranked

before item (𝑖♯𝑠, 𝑗
♯
𝑠) in the weighted marginal value sort),

we denote its new marginal value as 𝑚′
ℓ and new cost as

𝑏′ℓ. Consider the relation between the two items (𝑖♯ℓ, 𝑗
♯
ℓ) and

(𝑖♯𝑠, 𝑗
♯
𝑠), there are 3 cases as follows:

Case 1 (they belong to the same agent): By the tie breaking

rule, we still have (𝑖♯ℓ, 𝑗
♯
ℓ) ≺ (𝑖♯𝑠, 𝑗

♯
𝑠) in ℒ, and thus 𝑚′

ℓ > 𝑚′.

Case 2 (they belong to different agents in the same region):

Since 𝑚♯
ℓ ≥ 𝑚♯

𝑠, 𝑏
♯
ℓ ≤ 𝑏♯𝑠, and therefore

𝑏′ℓ = 𝑏♯ℓ ≤ 𝑏♯𝑠 ≤ 𝑏′. (16)

Case 3 (they belong to different regions): Trivially, we have

𝑚′
ℓ = 𝑚♯

ℓ and 𝑏′ℓ = 𝑏♯ℓ, and therefore

𝑏′ℓ

𝑚′
ℓ𝑤

♯
ℓ

=
𝑏♯ℓ

𝑚♯
ℓ𝑤

♯
ℓ

≤
𝑏+𝑘

𝑚+
𝑘 𝑤

+
𝑘

<
𝑏′

𝑚′𝑤♯
𝑠

(17)

Moreover, we have 𝑚′
ℓ = 𝑚♯

ℓ ≥ 𝑚♯
𝑠 ≥ 𝑚′.

It is easy to find out in all the above 3 cases unit (𝑖♯ℓ, 𝑗
♯
ℓ)

will be picked up and be ranked before (𝑖♯𝑠, 𝑗
♯
𝑠) in ℒ. Let 𝑠′

be the unit (𝑖♯𝑠, 𝑗
♯
𝑠)’s new rank of marginal value. We have

𝑠′ ≥ 𝑠 and therefore

𝑏′ >
𝛾𝐵

𝑠
≥ 𝛾𝐵

𝑠′
. (18)

So, by proposition 7, (𝑖♯𝑠, 𝑗
♯
𝑠) can’t be picked up, and this is a

contradiction. �

Based on lemma 8, an upper bound for total threshold
payment of all the selected units follows directly.

Lemma 9. The threshold payment required by Greedy-
LDR(𝑆,𝐵, 𝛾) is upper bounded by (1 + 𝑙𝑛𝑁)𝛾𝐵.

Proof. By lemma 8, the threshold payment is

𝑛∑︁
𝑖=1

𝑎𝑖∑︁
𝑗=1

𝜃𝑖𝑗 =

𝑘∑︁
𝑠=1

𝜃
𝑖
♯
𝑠𝑗

♯
𝑠
≤

𝑘∑︁
𝑠=1

𝛾𝐵

𝑠

≤
𝑁∑︁

𝑠=1

𝛾𝐵

𝑠
= 𝛾𝐵

𝑁∑︁
𝑠=1

1

𝑠
≤ (1 + ln𝑁)𝛾𝐵 (19)

That is, it is upper bounded by (1 + 𝑙𝑛𝑁)𝛾𝐵. �

Let 𝑜𝑝𝑡(𝑆,𝐵) be the value of the optimal solution in the
public information case. We can relate it to the greedy solu-
tion in the strategical case, by the following lemma.
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Lemma 10. Let 𝛿*𝑤* be the highest marginal value of all
the units and 0 < 𝛾 ≤ 1, then we have

1 + 𝛾

2 + 𝛾
𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)) +

𝛿*𝑤*

2 + 𝛾
>

𝛾

2 + 𝛾
𝑜𝑝𝑡(𝑆,𝐵)

(20)

Proof. Let 𝑘 be the maximal index for which
∑︀�̂�

ℓ=1 𝑏
+
ℓ ≤

𝐵, 𝑏′
�̂�+1

= 𝐵−
∑︀�̂�

ℓ=1 𝑏
+
ℓ and 𝑚′

�̂�+1
= 𝑚+

�̂�+1
·
𝑏′
�̂�+1

𝑏
�̂�+1

. So, we can

define the fractional greedy solution as

𝑓(𝑆,𝐵) =

�̂�∑︁
ℓ=1

𝑚+
ℓ 𝑤

+
ℓ +𝑚′

�̂�+1𝑤
+

�̂�+1
(21)

Let 𝑇 = {(𝑖1, 𝑗1), . . . , (𝑖𝑘, 𝑗𝑘)} be the subset returned by

Greedy-LDR(𝑆,𝐵, 𝛾). So, ∀ℎ ∈ {𝑘 + 1, ..., 𝑘}, we have

𝑏+ℎ
𝑚+

ℎ𝑤
+
ℎ

≥
𝑏+𝑘+1

𝑚+
𝑘+1𝑤

+
𝑘+1

>
𝛾𝐵∑︀𝑘+1

ℓ=1 𝑚+
ℓ 𝑤

+
ℓ

(22)

where the last inequality follows from the fact that the greedy
strategy stops at item 𝑘 + 1. Hence

𝑏+ℎ >
𝛾𝐵 ·𝑚+

ℎ𝑤
+
ℎ∑︀𝑘+1

ℓ=1 𝑚+
ℓ 𝑤

+
ℓ

(23)

Similarly, we can obtain

𝑏′�̂�+1 >
𝛾𝐵 ·𝑚′

�̂�+1
𝑤+

�̂�+1∑︀𝑘+1
ℓ=1 𝑚+

ℓ 𝑤
+
ℓ

(24)

Adding inequality (19) for each ℎ and inequality (20) together:

𝛾𝐵

∑︀�̂�
ℎ=𝑘+1 𝑚

+
ℎ𝑤

+
ℎ +𝑚′

�̂�+1
𝑤+

�̂�+1∑︀𝑘+1
ℓ=1 𝑚+

ℓ 𝑤
+
ℓ

<

�̂�∑︁
ℎ=𝑘+1

𝑏+ℎ + 𝑏′�̂�+1 ≤ 𝐵

(25)
which implies

�̂�∑︁
ℎ=𝑘+2

𝑚+
ℎ𝑤

+
ℎ +𝑚′

�̂�+1𝑤
+

�̂�+1
<

1− 𝛾

𝛾
𝑚+

𝑘+1𝑤
+
𝑘+1+

1

𝛾

𝑘∑︁
ℓ=1

𝑚+
ℓ 𝑤

+
ℓ

(26)
It is trivial that 𝑜𝑝𝑡(𝑆,𝐵) ≤ 𝑓(𝑆,𝐵), and moreover

𝑓(𝑆,𝐵) =

𝑘+1∑︁
ℓ=1

𝑚+
ℓ 𝑤

+
ℓ +

�̂�∑︁
ℓ=𝑘+2

𝑚+
ℓ 𝑤

+
ℓ +𝑚′

�̂�+1𝑤
+

�̂�+1

<
1 + 𝛾

𝛾

𝑘∑︁
ℓ=1

𝑚+
ℓ 𝑤

+
ℓ +

1

𝛾
𝑚+

𝑘+1𝑤
+
𝑘+1 (27)

≤ 1 + 𝛾

𝛾
𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)) +

1

𝛾
𝛿*𝑤*

Therefore, this lemma holds. �

Now, we have prepared all the necessary parts for build-
ing a truthful budget-feasible mechanism with performance
guarantee for the setting considered in this paper.

4.4 A budget-feasible randomized
mechanism

Lemma 9 implies to bound the total payment of the greedy
solution by 𝐵, at most we can set 𝛾 = 1

1+𝑙𝑛𝑁
. Together with

lemma 10, we can propose a random mechanism as follows.

Random-Mechanism-LDR

1. Let 𝑆′ = {𝑖 ∈ 𝑆 | 𝑏𝑖 ≤ 𝐵},
𝑅 = {𝑗 ∈ [𝑚] | ∃𝑖 ∈ 𝑆′ 𝑠.𝑡. 𝑟(𝑖) = 𝑗},
𝑗* ∈ argmax𝑗∈𝑅 𝑤𝑗𝛿

𝑗
1, 𝑖

* ∈ 𝐽𝑗*

2. with probability 1+ln𝑁
3+2 ln𝑁

return (𝑒𝑖
*
, 𝐵)

3. with probability 2+ln𝑁
3+2 ln𝑁

– 𝑆 = (𝑎1, ..., 𝑎𝑛)← Greedy-LDR(𝑆,𝐵, 1
1+ln𝑁

)

– 𝑃 = (
∑︀𝑎1

𝑗=1 TP(1, 𝑗), ...,
∑︀𝑎𝑛

𝑗=1 TP(𝑛, 𝑗))

– return (𝑆, 𝑃 )

Basically, the above mechanism first of all delete all unit-
s with cost bid higher than 𝐵, and then with probability
1+ln𝑁
3+2 ln𝑁

it selects the unit with the highest value and pay
all the budget to the corresponding agent; with probability
2+ln𝑁
3+2 ln𝑁

it selects the greedy solution and pay the correspond-
ing agents according corollary 2. The above probabilities is
actually set up based on lemma 10 to achieve a relatively
good performance guarantee.

Theorem 11. Random-Mechanism-LDR is tractable,
universally truthful, ir and budget-feasible.

Proof. 1) Tractability : Tractability of this mechanism is
trivial, since it is obvious that the greedy allocation and the
threshold payments can be computed in polynomial time.

2) Universally truthfulness: the sub-mechanism in step 2
picks up a unit with the highest weighted marginal value
and pays all the budget to the corresponding agent and is
trivially truthful. By lemma 5 and proposition 6, Greedy-
LDR is monotone, and the payment transfered to each a-
gent is the total threshold payment of all her units. Hence,
by corollary 2, this sub-mechanism is truthful. Therefore,
Random-Mechanism-LDR is universally truthful.

3) ir: notice that all the agents that bid a unit cost higher
than 𝐵 will be deleted directly. Hence, the sub-mechanism
in step 2 is trivially individually rational. And so does the
sub-mechanism in step 3, since the payment to each agent is
the sum of the threshold bid of al her picked up units, which
is no less than her bid unit cost.

4) Budget feasibility: by lemma 9, the threshold payment
required by Greedy-LDR(𝑆,𝐵, 1

1+ln𝑁
) is upper bounded by

(1+ ln𝑁) 1
1+ln𝑁

𝐵 = 𝐵. Moreover, according to proposition 6
the payment spend is actually the threshold payment. Hence,
budget feasibility is satisfied. �

Finally, we can establish a theoretical performance lower
bound for the proposed randomized mechanism.
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Theorem 12. Random-Mechanism-LDR is (3 + 2 ln𝑁)
- approximation.

Proof. Let 𝛾 = 1
1+ln𝑁

, we can obtain 1+𝛾
2+𝛾

= 2+ln𝑁
3+2 ln𝑁

,

and 1
2+𝛾

= 1+ln𝑁
3+2 ln𝑁

. Hence, according to lemma 10, the

expected value obtained by this randomized mechanism

is 1+𝛾
2+𝛾

𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)) + 𝛿*𝑤*

2+𝛾
> 𝛾

2+𝛾
𝑜𝑝𝑡(𝑆,𝐵) =

1
3+2 ln𝑁

𝑜𝑝𝑡(𝑆,𝐵). �

Note that, the approximation ratio obtained by our mech-
anism isn’t a constant. However, we can conclude that, our
mechanism is already optimal within a constant factor.

Proposition 13. No universally truthful and budget-feasible
mechanism can do better than ln𝑁-approximation for ldr.

Proof. Since no universally truthful and budget-feasible
mechanism can do better than ln𝑁 -approximation for bound-
ed knapsack valuation functions [6]. And we have shown that
ldr is a superset of bounded knapsack. �

Intuitively, the above proposition implies as 𝑁 →∞, our
setting turns into a continuous setting, and the approximation
ratio is unbounded. This result is actually consistent with
that of [21], which implies no assumption is put on the bidder
dominance 𝛼. It is possible that 𝛼 = 0, and therefore the
approximation ratio is unbounded.

5 A DETERMINISTIC MECHANISM

We can also propose a deterministic mechanism for our set-
ting, based on the proposed greedy allocation function. Ac-
cording to lemma 10 mentioned above, it is clear that bound-
ed performance lower bound guarantee can be achieved by
simply return argmax𝑇∈{Greedy-LDR(𝑆,𝐵,𝛾),{(𝑖*,1)}} 𝑣(𝑇 ). But
unfortunately, it is trivial to show this comparison will dam-
age monotonous of the allocation function and thus damage
truthfulness. Motivated by [7], we can circumvent this issue
by comparing (𝑖*, 1) and optimal fractional solution for set
𝑆 ∖ {(𝑖*, 1)}.

Mechanism-LDR

1. Let 𝑆′ = {𝑖 ∈ 𝑆 | 𝑏𝑖 ≤ 𝐵},
𝑅 = {𝑗 ∈ [𝑚] | ∃𝑖 ∈ 𝑆′ 𝑠.𝑡. 𝑟(𝑖) = 𝑗},
𝑗* ∈ argmax𝑗∈𝑅 𝑤𝑗𝛿

𝑗
1, 𝑖

* ∈ 𝐽𝑗*

2. If 𝛿𝑖
*

1 𝑤𝑖* ≥ 𝑓(𝑆∖{(𝑖*,1)},𝐵)

1+ln𝑁+
√

2+3 ln𝑁+ln2 𝑁
return (𝑒𝑖

*
, 𝐵)

otherwise
– 𝑆 = (𝑎1, ..., 𝑎𝑛)← Greedy-LDR(𝑆,𝐵, 1

1+ln𝑁
)

– 𝑃 = (
∑︀𝑎1

𝑗=1 TP(1, 𝑗), ...,
∑︀𝑎𝑛

𝑗=1 TP(𝑛, 𝑗))

– return (𝑆, 𝑃 )

Theorem 14. Mechanism-LDR is tractable, truthful, ir
and budget-feasible.

Proof. Tractability is trivial. Truthfulness is also trivial,
since the bid of agent 𝑖* is independent to the value of
𝑓(𝑆 ∖ {(𝑖*, 1)}, 𝐵), and the two sub-mechanisms as have

shown in the proof of theorem 11 are truthful. Moreover,
ir and budget feasibility can also be shown similarly. �

The performance guarantee lower bound of this determin-
istic mechanism can be established as follows.

Theorem 15. The deterministic mechanism Mechanism-
LDR is 2 + ln𝑁 +

√︀
2 + 3 ln𝑁 + ln2 𝑁 - approximation.

Proof. We denote as 𝛽 = 1+ln𝑁 +
√︀

2 + 3 ln𝑁 + ln2 𝑁

= (1 + ln𝑁)(1 +
√︁

2+ln𝑁
1+ln𝑁

). With the obtained allocation 𝒜,
there are the following 2 cases:

Case 1 (𝒜 = 𝑒𝑖
*
): We have 𝛽 · 𝛿*𝑤* ≥ 𝑓(𝑆 ∖ (𝑖*, 1), 𝐵), and

therefore

𝑜𝑝𝑡(𝑆,𝐵) ≤ 𝑓(𝑆 ∖ (𝑖*, 1), 𝐵) + 𝛿*𝑤* ≤ (1 + 𝛽)𝛿*𝑤* (28)

Case 2 (𝒜 =Greedy-LDR(𝑆,𝐵, 𝛾), where 𝛾 = 1
1+ln𝑁

):

By (27) We have 𝛽 · 𝛿*𝑤* < 𝑓(𝑆 ∖ (𝑖*, 1), 𝐵) ≤ 𝑓(𝑆,𝐵)

<
1 + 𝛾

𝛾
𝑣(Greedy-LDR(𝑆,𝐵, 𝛾) +

1

𝛾
𝛿*𝑤* (29)

Hence, 𝛿*𝑤* < 1+𝛾
𝛽𝛾−1

𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)), and by lem-

ma 10, we can obtain

𝑜𝑝𝑡(𝑆,𝐵) <
1 + 𝛾

𝛾
𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)) +

𝛿*𝑤*

𝛾

< (
1 + 𝛾

𝛾
+

1

𝛾
· 1 + 𝛾

𝛽𝛾 − 1
)𝑣(Greedy-LDR(𝑆,𝐵, 𝛾)) (30)

= (1 + 𝛽)𝑣(Greedy-LDR(𝑆,𝐵, 𝛾))

Hence, the mechanism is always (1 + 𝛽)-approximation. �

6 CONCLUSION

Cellular traffic offloading is nowadays an important problem
in mobile networking. We focus on the theoretical aspect
of this problem, and aim to propose a truthful mechanism
that optimally mitigates the overloading issue of a macrocell
base station with a given fixed budget. We proposed to use
the class of local diminishing return (ldr) demand valua-
tion functions to evaluate the offloading resources obtained
from the agent, and then our problem can be formalized as
a multi-unit budget feasible mechanism problem for ldr de-
mand valuation functions. We then proposed a greedy-based
randomized mechanism for this setting, and proved it is
budget-feasible, truthful, individual rational and (3 + 2 ln𝑁)
- approximation. We also proposed a deterministic mecha-
nism which is budget-feasible, truthful, individual rational

and (2 + ln𝑁 +
√︀

2 + 3 ln𝑁 + ln2 𝑁) - approximation. Our
work has successfully extended the multi-unit budget-feasible
mechanism class, and proposed a novel mechanism for solving
the cellular traffic offloading problem.
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