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ABSTRACT

The continuous link connectivity is critical for the efficient
collaboration of multiple unmanned aerial vehicles (UAVs).
However, the UAV communication environments are not on-
ly harsh, but are also confronted with the threats of smart at-
tackers, which pose great barriers in maintaining the links un-
blocked. In this paper, we leverage the paradigm of the Gen-
erative Adversarial Network (GAN) to formulate an attack-
resilient connectivity game between a pair of neighboring
UAVs and an attacker. In the three-agent adversary game,
the attacker acts as the generator, which attempts to gen-
erate highly approximate information as the UAVs so as to
maximize its jamming capability; while the pairwise UAVs
act as the discriminators, which attempt to enhance the capa-
bility of refusing the fake information (i.e., the opponent’s at-
tack). As the state-of-the-art GAN learning algorithms suffer
from the instability dilemma (i.e., either with the unsuccess-
ful convergence or with the low generation/discrimination
performance), we incorporate the conditional GAN with the
least square objective loss function as well as the mean square
error such that the attacker can improve the detection capa-
bility from UAVs’ historical activity patterns and the UAVs
can accordingly adjust the connectivity strategy. We vali-
date the effectiveness of the proposed algorithm through ex-
tensive evaluations. Results demonstrate that the proposed
algorithm can improve the convergence efficiency, reduce the
connection latency, and enhance the attack-resilience capa-
bility significantly.
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1 INTRODUCTION

Networked unmanned aerial vehicles (UAVs) have emerged
as a significant technology for civil, public and military ap-
plications such as parcel delivery, environment surveillance,
precision agriculture, reconnaissance and peacekeeping. The
agile UAVs operating in the free space can provide humans
with practical, intelligent and irreplaceable services. Howev-
er, constrained by the energy, payload, coverage area and
execution capability of one single UAV, many of the above
applications require multiple drones to fulfill a complicated
and time-critical task collaboratively. Thus, the unimpeded
information delivery and sharing play a key role in coordi-
nating the multi-UAV networks [29].

However, the continuous connectivity maintenances and
the resultant multi-UAV coordinations are confronted with
particular difficulties, which are listed as follows:

• Compared with the terrestrial wireless networks, the
UAV networks have some distinctive features such as
the free flight space, high mobility, harsh and dynamic
communication environments. As a result, it is chal-
lenging to keep connected with the nearby UAVs over
the unstable channels.
• The potential airborne spectrum resources (e.g., IEEE
L-band and C-band [21]) are not sufficient for the UAV
communications particularly when the UAV swarm co-
exists with other wireless devices. Thus, the spectrum
resource scarcity and the inevitable interferences al-
so reduce the idle channels and hinder the multi-UAV
connectivity [14].
• It is common that a variety of UAVs manufactured
from different vendors are collected together to fulfill
tasks. There always exist obvious gaps in operation
mechanisms and sensing capabilities, which are critical
obstacles for the multi-UAV coordination.
• The UAV networks are particularly vulnerable to cyber-
attacks in the sense that the defense measures in the
air are much weaker than the ground. A successful at-
tack on safety-critical UAVs (e.g., the military tactical
networks) directly results in the block of communica-
tions, information leakage from compromised defectors
and even disastrous consequences [5, 9, 10].

In a nutshell, the connected link is a prerequisite for the
dynamic networking of autonomous UAVs. Any disconnec-
tion will lead to failures of multi-UAV communications [32].
In Figure 1, we illustrate the different connectivity status
between a pair of UAVs. Only when the UAVs access a same
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(a) the disconnected
state at time t-1

(b) the connected
state at time t

(c) the jammed state
at time t+1

Figure 1: Illustrations of the link status

available and unjammed channel can they get connected to
each other.

In this paper, we attempt to design an attack-resilient net-
work connectivity method to facilitate the multi-UAV collab-
oration. As the opponents aim at maximizing their own at-
tack effects against the legitimate UAVs’ defense strategies,
we adopt a generative learning model termed Generative Ad-
versarial Networks (GANs) [12]. In the GAN model, there
are two separate neural networks with competitive goals: the
discriminator aims at distinguishing between the real and the
fake information, while the generator aims at generating as
realistic information as possible to mislead the discriminator.
By iteratively training, the accuracies of both discriminator
and generator become more and more sensitive. Analogous-
ly, the discriminator can be regarded as the legitimate UAV,
which aims at defending against malicious attacks and get-
ting connected to collaborative peers, while the generator
can be regarded as the attacker, which aims at disguising
itself as the legitimate UAV and blocking the UAVs’ normal
communications.

However, the standard GAN suffers from the dilemmas of
mode collapse (i.e., it is difficult to reach the convergence)
and trivial performance (i.e., the generated fake samples are
dissatisfactory). In this work, we introduce a three-agent
GAN structure to characterize the adversary between a pair
of legitimate UAVs and a malicious jammer. This pair of
UAVs (i.e., two discriminators) can jointly identify the in-
terference behavior of the jammer (i.e., the generator) and
thus a better anti-jamming capability can be expected. In
order to address the mode collapse dilemma, we incorpo-
rate the conditional GAN with the least square loss func-
tion. The conditional GAN is adopted due to the fact that
the future accessed channels are relevant to the historical
channel switching patterns. Moreover, the least square loss
function can achieve a stable training. In order to address
the trivial performance dilemma, we introduce an empirical
objective function that can oblige the generator to produce
high-fidelity samples. We evaluate the proposed algorithm
on the UAVs’ anti-jamming network connectivity task. Re-
sults display that our algorithm enables UAVs to reliably
keep away from the jammed channels and to quickly reach
the channel consensus with the target peers.

2 RELATED WORK

In this section, we review some representative works of ad-
versarial learning in the community of UAV networks.

2.1 Anti-jamming Game for UAVs

As the attackers naturally compete for the communication
resources with the legitimate nodes, the game-based anti-
jamming methods have become feasible solutions. Chen et al.
[4] investigate the connectivity maintenance problem in the
Internet of Battlefield Things (IoBTs) under the threats of
attackers, and the subgame perfect Nash equilibrium (SPE)
is adopted to resist link failures. Abuzainab and Saad [2] also
study the connectivity maintenance problem in IoBTs, and
the counteractions between the defender and the attacker is
casted as the dynamic multi-stage Stackelberg connectivity
game. A psychological dynamic game between the soldier
and the attacker in IoBTs is investigated in [16]. By esti-
mating each other’s belief and behavior, the soldier (resp.
attacker) can decide the opponent’s connection (resp. discon-
nection) strategies. By virtue of the Aoyagi’s game theory,
[7] presents a group communication system that can max-
imize the mission effectiveness for resource-restricted mili-
tary tactical networks. In [1], a non-cooperative combinato-
rial game is investigated for the interference-resilient chan-
nel access problem, and the game is certain to converge to
a pure-strategy Nash equilibrium. In [28], a distributed anti-
coordination game algorithm is proposed to tackle the chan-
nel interference issue in the coexisting networks of UAVs and
D2D devices. In [31], a prospect-theory-based static game is
studied between the subjective attacker and the UAV trans-
mission. Moreover, the reinforcement-learning-based dynam-
ic game is also studied by interacting with the unknown en-
vironments repeatedly.

2.2 GAN-based Applications in Networks

The GAN model has been widely applied in image and text
generation tasks. However, the investigations of GANs on
communication networks are still in infancy. In [30], the Ad-
vGAN framework is proposed to produce adversarial pertur-
bations efficiently. Thus, AdvGAN performs well in improv-
ing adversarial defense methods. In [23], the conflicting priva-
cy objectives between the defense mechanism and the infer-
ence attack are modeled by the GAN. In [8], the adversarial
learning is leveraged to generate high-fidelity synthetic train-
ing data so as to improve the accuracy of spectrum sensing in
the dynamic environment. In [6], the GAN model is utilized
for data-driven scenario generation of renewable resources,
which is significant for decision-making in power grids. In
[18], Lei et al. apply the GAN to generate high-quality graph
topologies and to tackle the temporal link prediction of dy-
namic networks. In [34], the GAN model is utilized to infer
city-wide fine-grained mobile data traffic consumptions from
limited coarse-grained measurements collected by probes.

In this paper, we utilize the GAN technique to charac-
terize the adversary between the legitimate UAVs and the
malicious jammer, trying to maintain the UAVs’ connected
links under the threats of smart attacks.
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3 PRELIMINARIES ON GAN

The GAN [12] learns a generative model as a two-player zero-
sum game between a generator and a discriminator:

• Generator G: G tries to generate (or select) the tar-
get’s information from the candidate resource pool for
the given simulation task. Its objective is to approxi-
mate the real information distribution as much as pos-
sible.
• DiscriminatorD:D tries to distinguish the real objects
(or samples) from the fake ones. Actually, it is a binary
classifier, which could be labelled as 1 if the objects (or
samples) are real and could be labelled as 0 otherwise.

The adversarial competition between G and D can be de-
noted as the following minimax objective function:

min
θG

max
θD
V(G,D) =min

θG
max
θD

Ex∼p(x) logD (x; θD)+

Ez∼p(z) log (1−D (G (z; θG); θD)) ,
(1)

where θG and θD denote the learning parameters of the gener-
ator G and the discriminator D respectively, G takes a noise
z from a noise distribution p(z) as the input and outputs a
sample, and p(x) denotes the real distribution of the train-
ing data x. For brevity, we use G(z) (resp. D(x)) instead of
G(z; θG) (resp. D (x; θD)) in the rest of the paper.

The objective of D is to minimize the loss function of
L(D) = −(Ex∼p(x) logD(x)+Ez∼p(z) log(1−D(G(z)))) while
fixing G. Analogously, the objective of G is to minimize the
loss function of L(G) = 1

|Dz|
∑
i

[log(1−D(G(z(i))))] while

fixing D.
Initially, G has poor ability in approximating the real sam-

ples, D can thus resist the fake samples confidently. As the
training proceeds, both the counterfeiting capability of G
and the identification capability of D enhance, and this prop-
erty can be utilized for adversarial learning tasks.

The GAN paradigm is suitable for tackling the competi-
tion tactics. However, the standard GAN training provides
no convergence guarantee when finding a Nash equilibrium
of a non-cooperative game with high-dimensional and con-
tinuous parameters [26].

To this end, the ongoing efforts aim at achieving the sta-
ble and efficient training, particularly for optimizing the loss
functions. For examples, Mao et al. [20] utilize the least
square loss functions (i.e., L(D)LSGAN = −Ex∼p(x)[(D (x)−
1)2] + Ez∼p(z)[D(z)2] and L(G)LSGAN = −Ez∼p(z)[D(z −
1)2]) for stable training. Thus, the training objective is to
minimize the Pearson χ2. The Wasserstein GAN (WGAN)
[3] defines the close distance between the real distribution
and the generated distribution (i.e., ρ(p(x), p(z))). The loss
functions of WGAN are L(D)WGAN = −Ex∼p(x)D (x) +
Ez∼p(z)D (G (z)) and L(G)WGAN = −Ez∼p(z)D (G (z)) re-
spectively. However, the weight clipping method in WGAN
may lead to low-quality generation samples and the non-
convergence dilemma. As a countermeasure, the WGAN-GP
model [13] adds a soft constraint with a penalty on the gra-
dient norm. Compared with the L(D)WGAN , the L(D) of

WGAN-GP adds an item of λEz∼p(z)[(∥ ∇zD(z) ∥2 −1)2].
Hence, WGAN-GP yields a more stable training. The Cycle-
GAN model [35] adds a cycle consistency loss that enables
symmetric bijections of F (G(x)) ≈ x and G(F (z)) ≈ z, and
the corresponding inverse loss function is LCyc = Ex∼p(x)[∥
F (G(x)) − x ∥1] + Ez∼p(z)[∥ G(F (z)) − z ∥1]. CycleGAN is
suitable for the case with no paired training data. Combined
with WGAN [3] and CycleGAN [35], the CWR-GAN model
[22] adds a regression loss on the paired samples, and thus
can prohibit the mode-collapse. Coincidentally, the VEE-
GAN model [27] avoids the mode-collapse by incentivizing
the newly-built reconstructor network to map all real data
to the noise distribution, the inverse approximation of the
generator network can thus produce high-quality samples.

Another roadmap of optimizing the adversarial learning
is to redesign the architectures of GANs. For examples, the
Triple-GAN model [19] conducts the three-player game by
adding a classifier, the conditional training of the generator
and the classifier enables them to reach their own optima.
The D2GAN model [25] aims at enhancing the identifica-
tion capability, and thus the game is conducted among two
discriminators and one generator by minimizing two diver-
gences. Moreover, D2GAN can reach the global optimum
provided that p(z) = p(x). The MAD-GAN model [11] in-
corporates multiple generators to generate diverse and high-
quality samples to mislead the only discriminator. MAD-
GAN also modifies the discriminator’s objective function so
as to identify the exact generator from confusing samples.

The algorithm in this paper is a combination of the above
two roadmaps: we optimize the loss function for an efficient
adversarial training; meanwhile, we adopt an appropriate ar-
chitecture to characterize the conflict between the pairwise
communication agents of sender/receiver (i.e., two discrimi-
nators) and the malicious jammer (i.e., the generator).

4 GAN-BASED ATTACK-RESILIENT
CONNECTIVITY GAME

The anti-jamming link connectivity task concerns how to
access the appropriate channel to set up a connection to an-
other neighboring UAV in the jamming-threatening tactical
network. In this section, we present the GAN-based algorith-
m for the anti-jamming connectivity problem.

4.1 System Model

We consider a distributed flying ad-hoc network (FANET)
consisting of multiple collaborative UAVs. The set of UAVs
is denoted as U . Each UAV has the capability of perceiving
the channel status and switching across different channels.
The UAVs are operating on a set of N orthogonal channels.
Due to the different locations and perception capabilities,
the sensed available channels at each UAV can be arbitrary.
Let Cs and Cr denote the available channel set of the sender
node s and the receiver node r respectively (∀s, r ∈ U).

As the data transmission among the collaborative UAVs
relies on the prerequisite of wireless connectivity, the sender
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s must firstly select and access the same qualified idle chan-
nel from multiple candidate channels as the target receiver
r and set up a link. Thus, node s (resp. r) has to send (re-
sp. receive) tentative announcement messages and fulfils the
handshaking process. Let cts ∈ Cs and ctr ∈ Cr denote the
channels that nodes s and r access at the time instant t
respectively. Over a continuous period of time, the channel
switching pattern of each node forms a sequence of chan-
nels. Take node s as example, its channel switching pattern
is denoted as Ss = {c1s, c2s, . . . , cts, . . .}. Moreover, to ensure
the connected link, we assume that the available channels
between any pair of UAVs can be different but overlap (i.e.,
∀s, r ∈ U , Cs ∩ Cr ̸= ∅). Only when cts = ctr and this com-
mon channel is qualified can this pair of UAVs transmit data
packets.

Besides the co-located UAVs, we assume that a limited
number of malicious jammers (either attackers or compro-
mised nodes) also exist in the FANET. The jammers are un-
coordinated and share no information among them. Some
jammers misbehave directly under the aim of interfering
the legitimate communications and draining the energies of
UAVs, while some jammers behave normally but eavesdrop.
In this paper, we focus on the former scenario, which further
includes two types: Reactive jamming and Fake ACK attack
[15]. Specifically, the sender and the receiver need to agree on
the common available channel by exchanging the tentative
announcement messages. The reactive jammer jams a chan-
nel only when it detects an on-going message transmission
so as to save energy. If the jammer intercepts the messages
successfully, it will transmit the generated fake acknowledge-
ment message to the sender. Consequently, the sender is de-
ceived by receiving a fake acknowledgement message from
the jammer. But in fact, the receiver does not receive the
real message at all. As a result, the communication latency
is prolonged and the link is disrupted by the jammer.

This connectivity game is suitable to be tackled by GAN
due to the fact that the sender and the receiver have the com-
mon objective of channel consensus against the jammer’s in-
terference behavior. In the GAN framework, the sender and
the receiver can be modeled as the discriminators, which
aim to reach the channel consensus as quickly as possible
while keeping away from the jammed channel. While the jam-
mer corresponds to the generator, which tries to mislead and
block the legitimate nodes by transmitting fake messages.

4.2 Three-agent Adversarial Connectivity
Learning Algorithm

We formulate a three-agent game that includes Double dis-
criminators of Ds (i.e., sender) and Dr (i.e., receiver), and
one Single generator of G (i.e., jammer), we thus term the
presented algorithm as DS-GAN.

Considering the common objective of an agreed idle chan-
nel between the sender and the receiver, the holistic objective
function of DS-GAN can be decomposed as:

min
G

max
Ds,Dr

V(G,Ds, Dr) =λs min
G

max
Ds

V(G,Ds)+

λr min
G

max
Dr

V(G,Dr),
(2)

where λs and λr denote the factor weights of Ds and Dr

respectively.

4.2.1 Designing the Loss Functions. To get connected to
the target neighbor, nodes need to transmit announcement
messages over different available channels tentatively, which
activate the detection behavior of the jammer. The jammer
attempts to take control of the nodes’ channel switching pat-
terns and to forge the legitimate nodes’ identities.

Initially, the jammer has no knowledge of the nodes’ switch-
ing patterns, the legitimate nodes can avoid to access the
jammed channel with high confidence. However, the jammer
gradually gets aware of the nodes’ switching patterns by de-
tecting and deriving the past accessed channels. That is, the
potential jamming attack is conditioned on the historical ob-
servations. Thus, we adopt the conditional GAN [24] for the
security game.

Here, we build a connection between the channel labels
(i.e., the given classes) and the generated samples. The ob-
jective of G is to predict and generate the samples under the
observed channel labels. The adversary between the sender
and the jammer is formulated as:

LcGAN (G,Ds) =min
G

max
Ds

Exs∼p(xs) logDs (xs|y)+

Ez∼p(z) log (1−Ds (G (z|y))) ,
(3)

where xs corresponds to the sender’s potential channel switch-
ing pattern Ss = {cts, . . .} (cts ∈ Cs, s ∈ U), y corresponds
to the previous channel switching pattern S′

s = {. . . , ct−1
s }1,

and z corresponds to the jammer’s potential channel switch-
ing pattern.

However, the standard conditional GAN suffers from the
dilemma of instability. As the LSGAN model [20] provides
the discriminator with a smooth and non-saturating gradi-
ent, and aims at making the real and generated samples in-
distinguishable, we thus incorporate LSGAN with the condi-
tional GAN for a stable training. The suggested loss function
combines the least square loss with that of the conditional
GAN. The loss function of Ds is given as:

LcLSGAN (Ds) =Exs∼p(xs)[(Ds (xs|y)− 1)2]+

Ez∼p(z)[(Ds (G (z|y)) + 1)2].
(4)

Likewise, the conditional loss function of Dr is given as:

LcLSGAN (Dr) =Exr∼p(xr)[(Dr (xr|y)− 1)2]+

Ez∼p(z)[(Dr (G (z|y)) + 1)2],
(5)

where xr corresponds to the receiver’s potential channel switch-
ing pattern Sr = {ctr, . . .} (ctr ∈ Cr, r ∈ U).

1As the sender/receiver’s historical channel switching patterns can
both be detected by the jammer, we thus omit y’s subscript of s/r.
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Correspondingly, the conditional loss function of G from
the perspective of Ds is given as:

LcLSGAN (G) = Ez∼p(z)[(Ds (G(z)|y))2]. (6)

To enhance G’s capabilities of detection and forgery, Eqn.
(6) is extended by an additional loss term:

LL1(G) = Exs∼p(xs)[∥ y −G(xs, z) ∥1], (7)

which obliges the generator to produce high-fidelity samples.
In order to address the dilemma of trivial performance,

the generated samples should be encouraged to be close to
the real data. A straightforward way to achieve this objective
is to minimize the Euclidean distance between the generated
and the real data distributions, resulting in the additional
term of mean square error (MSE) to G’s loss function:

LMSE(xs, G(z; θ)) =∥ xs −G(z; θ) ∥22 . (8)

Specifically, the optimal θ̂ can be obtained by solving the
following formula:

θ̂ = argmin
θ

1

T
LMSE(xs, G(z; θ))

= argmin
θ

1

T

T∑
t

∥∥xt
s −G

(
zt; θ

)∥∥2

2
.

(9)

Eqn. (9) can oblige the fake samples to be close to the
real ones while the adversarial loss aims to minimize the
divergence between these two distributions.

Putting Eqns. (6)-(9) all together, the final objective loss
of G from the perspective of Ds is

LDs(G) =LcLSGAN (G,Ds) + λ1LL1(G) + λ2LMSE

=Ez∼p(z)[(Ds (G(z)|y))2]+
λ1Exs∼p(xs)[∥ y −G(xs, z) ∥1]+

λ2
1

T

T∑
t

∥∥xt
s −G

(
zt
)∥∥2

2
,

(10)

where λ1 and λ2 denote the balancing parameters.
As for the adversary between G andDr, it can be obtained

in the same way as Eqn. (10), which is given as:

LDr (G) =LcLSGAN (G,Dr) + λ3LL1(G) + λ4LMSE

=Ez∼p(z)[(Dr (G(z)|y))2]+
λ3Exr∼p(xr)[∥ y −G(xr, z) ∥1]+

λ4
1

T

T∑
t

∥∥xt
r −G

(
zt
)∥∥2

2
,

(11)

where λ3 and λ4 denote the balancing parameters.
In view of Eqns. (2), (10) and (11), it is apparent to obtain

the holistic objective loss function of G against both Ds and
Dr.

4.2.2 Training the DS-GAN. The training process is for-
mally described in Algorithm 1, which utilizes the Stochas-
tic Gradient Descent (SGD) idea to update the DS-GAN
parameters.

Specifically, we adopt Adam stochastic approximation [17]
to avoid the undesired case of mode collapse (i.e., the gener-
ated samples are lack of diversity and deviate from the real
distribution). Adam leverages the parameters of (β1;β2, α)
to average the (squared) gradient, which indicates an im-
pulse to push the generator towards various domains.

Algorithm 1: The DS-GAN training algorithm

Input: the batch size m; the iteration numbers for
G,Ds and Dr (i.e., nG and nD); the factor
weights of λs and λr; the balancing parameters
of λ1, · · · , λ4; the Adam hyper-parameters of
α, β1, β2; the learning rate η.

Initialize two discriminators Ds, Dr and the generator
G parameterized by θDs , θDr and θG respectively;

while θDs , θDr and θG are not convergent do
for epochD = 1 to nD do

Sample batch from channel switching patterns
{xt

s, y
t}mt=1, x

t
s, y

t ⊆ Ss, s ∈ U ;
Sample batch from channel switching patterns
{xt

r, y
t}mt=1, x

t
r, y

t ⊆ Sr, r ∈ U ;
Update Ds by using gradient descent:

gDs ←∇Ds [
1

m

m∑
t=1

(
D

(
xt
s

∣∣yt )− 1
)2
+

1

m

m∑
t=1

(D
(
G
(
zt

∣∣yt ))+ 1)2];

θDs ← θDs + η ·Adam(θDs , gDs , α, β1, β2);
Update Dr by using gradient descent:

gDr ←∇Dr [
1

m

m∑
t=1

(
D

(
xt
r

∣∣yt )− 1
)2
+

1

m

m∑
t=1

(D
(
G
(
zt

∣∣yt ))+ 1)2];

θDr ← θDr + η ·Adam(θDr , gDr , α, β1, β2);

for epochG = 1 to nG do
Sample batch from channel switching patterns
{zt, yt}mt=1;
Update G by using gradient descent:

gG ←∇G[
1

m

m∑
t=1

(
D

(
G(zt)

∣∣yt ))2+
λ1 (or 3)

1

m

m∑
t=1

∥∥yt −G
(
xt
s (or r), z

t)∥∥
1
+

λ2 (or 4)
1

m

m∑
t=1

∥ xt
s (or r) −G(zt) ∥22];

θG ← θG − η ·Adam(θG, gG, α, β1, β2);
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In the three-agent adversary game, the pairwise discrimi-
nators and the generator are trained iteratively for nD and
nG times respectively. Unless the objective loss functions are
convergent, the discriminators’ parameters will be adjusted
by fixing the opponent’s parameters, and vice versa. In each
iteration, Ds, Dr and G stochastically sample m potential
and previous channels, and calculate their respective gradi-
ents gDs , gDr and gG according to the corresponding loss
functions. These gradients are then utilized to adjust the
neural network parameters θDs , θDr and θG.

By performing the iterative training algorithm, the anti-
jamming intercommunication capability of the UAVs and
the jamming capability of the attacker are improved syn-
chronously. Particularly, armed with the empirical loss func-
tion of MSE, the jammer can track the UAVs’ channel switch-
ing patterns with minor deviations. Meanwhile, the UAVs al-
so learn to identify the attack behaviors with high accuracy
and take adaptive measures to keep away from the jammed
channels by virtue of the least square loss.

4.2.3 Theoretical Analysis. To analyze the equilibrium con-
dition of the minimax game in the proposed DS-GAN model,
we first consider the optimal discriminators (i.e., D⋆

s and D⋆
r )

under an arbitrary generator G.
Proposition 4.1. For any fixed generator G, maximizing

V(G,Ds, Dr) yields to the following closed-form optimal dis-
criminators D⋆

s and D⋆
r :

D⋆
s = p(xs)−p(xzs)

p(xs)+p(xzs)
and D⋆

r = p(xr)−p(xzr)
p(xr)+p(xzr)

.

Proof. Given a fixed G, the learning criteria for Ds is to
minimize

V(G,Ds) =Exs∼p(xs)[(Ds (xs|y)− 1)2]+

Ez∼p(z)[(Ds (G (z|y)) + 1)2]

=

∫
χ

(p(xs)(Ds (xs|y)− 1)2+

p(xzs)(Dzs (xzs|y) + 1)2)dx.

While fixing G, the loss function of Ds is minimized if
the generated samples approximate to the real data. In this
case, the jammer’s potential channel switching sequence z
and the sender’s potential channel switching sequence xs fol-
low similar patterns. Thus, Ds(G(z|y)) can be regarded as
Dzs(xzs|y).

Considering the internal function of (p(xs)(Ds (xs|y) −
1)2+p(xzs)(Dzs (xzs|y)+1)2), it reaches the minimum value

at p(xs)−p(xzs)
p(xs)+p(xzs)

with respect to Ds.

Similarly, the training function of Dr reaches its minimum

at p(xr)−p(xzr)
p(xr)+p(xzr)

. This concludes the proof. �

Theorem 4.2. Optimizing the DS-GAN model is equivalent
to minimize the Pearson χ2 divergence between p(xs)+p(xzs)
and 2p(xzs) with respect to Ds (resp. p(xr) + p(xzr) and
2p(xzr) with respect to Dr).

Proof. Substituting the optimal D⋆
s and D⋆

r in Proposi-
tion 1 into Eqn. (2), the minimax game can be reformulated
as:

G⋆ =argmin
G
V(G,D⋆

s , D
⋆
r )

=λs(2 · JSD(p(xs) ∥ p(xzs))− log 4)+

λr(2 · JSD(p(xr) ∥ p(xzr))− log 4),

(12)

where JSD (0 6 JSD 6 1) denotes the Jensen-Shannon diver-
gence between the generated and the real data distributions.

According to Proposition 4.1, Eqn. (12) can be reformu-
lated as

G⋆ =λs · 2Exs∼p(xs)

[
(D⋆

s (xs|y))2
]
+

λr · 2Exr∼p(xr)

[
(D⋆

r (xr|y))2
]

=λs · 2Exs∼p(xs)

[(
p(xs)− p(xzs)

p(xs) + p(xzs)

)2
]
+

λr · 2Exr∼p(xr)

[(
p(xr)− p(xzr)

p(xr) + p(xzr)

)2
]

=λs · 2
∫
χ

p(xs)

(
p(xs)− p(xzs)

p(xs) + p(xzs)

)2

dx+

λr · 2
∫
χ

p(xr)

(
p(xr)− p(xzr)

p(xr) + p(xzr)

)2

dx

=λs · 2
∫
χ

((p(xs) + p(xzs))− 2p(xzs))
2

p(xs) + p(xzs)
dx+

λr · 2
∫
χ

((p(xr) + p(xzr))− 2p(xzr))
2

p(xr) + p(xzr)
dx

=2λsχ
2
Pearson(p(xs) + p(xzs) ∥ 2p(xzs))+

2λrχ
2
Pearson(p(xr) + p(xzr) ∥ 2p(xzr)),

(13)

where χ2
Pearson denotes the Pearson χ2 divergence.

As a conclusion, optimizing the DS-GAN model is equiva-
lent to minimize the Pearson χ2 divergence between p(xs) +
p(xzs) and 2p(xzs) with respect to Ds (resp. p(xr) + p(xzr)
and 2p(xzr) with respect to Dr). Furthermore, the glob-
al minimum of Eqn. (13) is yielded if p(xs) = p(xzs) and
p(xr) = p(xzr). �

Remark 4.3. When p(xs)+p(xzs) = 0, p(xs) > p(xzs), p(xr)+
p(xzr) = 0 and p(xr) > p(xzr), the objective function in
Eqn. (13) will become infinite. However, the infinity does
not exist in the χ2 divergence due to the fact that all of
p(xs), p(xzs), p(xr) and p(xzr) are non-negative. As a result,
the least square loss function in the proposed DS-GAN mod-
el can alleviate the mode collapse dilemma.

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the DS-
GAN algorithm.

We select two GAN-based algorithms with three players
(i.e., Triple-GAN [19] and D2GAN [25]) and one non-GAN-
based game algorithm (i.e., CORE [1]) as the baselines. We
apply these algorithms to the UAVs’ anti-jamming link con-
nectivity task and utilize three evaluation metrics, which are
defined as follows:
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• Average connection latency – The average time
elapsed before the UAVs successfully access a common
unjammed channel and set up a link.
• Attack probability – The probability that the at-
tacker (i.e., the generator) accurately track the UAVs’
activity patterns and impose jammings. This metric
can also be interpreted as the ratio between the num-
ber of the possibly jammed channels and the number
of UAVs’ mutual available channels.
• Packet delivery ratio – The ratio between the UAVs’
successfully delivered data packets and their actually
delivered data packets.

We consider a circular flight area with the radius of 100m,
in which the UAVs are flying at the same altitude of 50m
and at a constant speed of 9m/s. We utilize the free-space
outdoor model [33] to characterize the channel status. The
UAVs are trying to discover the neighboring node by switch-
ing across different channels and broadcasting the announce-
ment messages. While the attacker aims at blocking the
UAVs’ communication link. Each UAV can only access one
channel at a time; likewise, the attacker can only jam one
channel at a time.

We divide the experiments into two sets: (1) fixing the
total number of channels (i.e., N) and varying the number of
UAVs’ mutual available channels (i.e., M = |Cs∩Cr| (∀s, r ∈
U)); (2) fixing M and varying N .

In the first set of experiments, we assume N = 50, |Cs| =
|Cr| = 0.5N,Cs ̸= Cr and M ∈ [5, 14]. Figures 2∼4 display
the evaluation results under these parameters. Each result
is obtained by averaging over 1,000 independent runs of the
compared algorithms.

Figure 2 shows the comparisons on the average connec-
tion latency. It can be seen that all algorithms cost shorter
connectivity time as the value of M increases due to the fac-
t that a larger value of M indicates more opportunities for
the channel consensus. The CORE algorithm needs longer
connectivity latencies than the other three GAN-based algo-
rithms under all values of M , which indicates that the GAN
paradigm is good at the adversary game. Among the three
GAN-based algorithms, the D2GAN algorithm performs the
worst due to the lack of optimizing the objective loss function.
The Triple-GAN algorithm performs better than D2GAN
due to the fact that the cross-entropy loss adopted in Triple-
GAN can stabilize its convergence and improve the training
efficiency. The proposed DS-GAN algorithm yields the short-
est average connection latencies under all values of M in the
sense that the conditional GAN with the least square objec-
tive loss function as well as the mean square error can yield
fast convergence.

Figure 3 shows the comparisons on the attack probabil-
ity. It can be seen that the attack probability will reduce
as the value of M increases. Generally, the anti-jamming ca-
pability of the CORE algorithm is the weakest. The other
GAN-based algorithms can enhance the UAVs’ defence ca-
pabilities obviously. However, for the D2GAN algorithm, its
anti-jamming performance is dissatisfactory, which implies
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Figure 2: Comparisons on the average connection
latency when fixing N and varying M
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Figure 3: Comparisons on the attack probability
when fixing N and varying M

that the accuracy of D2GAN’s discriminator is not high. Al-
though the Triple-GAN algorithm’s anti-jamming capability
is better than D2GAN, Triple-GAN is still dominated by the
proposed DS-GAN algorithm. The reason is that DS-GAN’s
optimized loss function effectively enables the discriminators
to refuse fake information.

Figure 4 shows the comparisons on the packet delivery
ratio. The variation trends of the packet delivery ratio are
relatively stable under different values of M . A larger value
of M (i.e., more opportunities for connectivity) results in a
slight increase in packet delivery ratio. The DS-GAN algo-
rithm yields the highest packet delivery ratio, followed by the
Triple-GAN, D2GAN and CORE algorithms in a descending
order.

In the second set of experiments, we assume N ∈ [10, 50],
|Cs| = |Cr| = 0.5N,Cs ̸= Cr and M = 5. Figures 5∼7
display the evaluation results under these parameters.

Specifically, Figure 5 displays the comparisons on the aver-
age connection latency. In contrast to Figure 2, all algorithms
cost longer time to get connected as the value of N increases
due to the fact that a larger value of N increases the difficul-
ty for the channel consensus. The DS-GAN algorithm yields
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Figure 4: Comparisons on the packet delivery ratio
when fixing N and varying M
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Figure 5: Comparisons on the average connection
latency when fixing M and varying N

the shortest average connectivity latencies under all values
of N , followed by the Triple-GAN, D2GAN and CORE algo-
rithms in an ascending order.

Figure 6 displays the comparisons on the attack probabil-
ity. It can be seen that a larger value of N can reduce the
attacker’s detection accuracy obviously and the DS-GAN al-
gorithm yields the best anti-jamming capability.

Figure 7 displays the comparisons on the packet delivery
ratio. The ratio of M

N
will decrease when N gets larger. Ac-

cordingly, the less connectivity opportunities lead to a small-
er packet delivery ratio. However, the downward trends are
relatively slow. Above all, the DS-GAN algorithm exhibits
apparent advantages on the packet delivery ratio under all
values of N .

6 CONCLUSIONS

In this paper, we investigate the UAVs’ secure link connectiv-
ity problem in the jamming-threatening FANET. We lever-
age the GAN paradigm to characterize the adversary be-
tween a pair of UAVs and a malicious jammer. The usage
of the three-agent GAN here is intractable due to the fact
that the instable training cannot support the timely message
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Figure 6: Comparisons on the attack probability
when fixing M and varying N
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Figure 7: Comparisons on the packet delivery ratio
when fixing M and varying N

delivery among UAVs and the trivial training performance
cannot depict the severe tactical environments. Considering
that the potential jamming behavior is conducted by detect-
ing the UAVs’ historical channel switching patterns, we in-
corporate the conditional GAN with the least square objec-
tive loss function as well as the mean square error to improve
the training performance. Evaluation results also reveal that
the UAVs can reliably get connected over the idle channel
even confronting with the potential jamming threats.
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