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ABSTRACT
The state-action space of an individual agent in a multiagent team

fundamentally dictates how the individual interacts with the rest

of the team. Thus, how an agent is defined in the context of its

domain has a significant effect on team performance when learning

to coordinate. In this work we explore the trade-offs associated with

these design choices, for example, having fewer agents in the team

that individually are able to process and act on a wider scope of

information about the world versus a larger team of agents where

each agent observes and acts in a more local region of the domain.

We focus our study on a traffic management domain and highlight

the trends in learning performance when applying different agent

definitions.
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1 INTRODUCTION
Many traditional multiagent benchmark domains include a strict

definition of the agent and the team, e.g. prisoner’s dilemma, ro-

bot soccer, predator-prey. However, we are increasingly faced with

real world problems where we, as system designers, get to choose

the multiagent team structure. For example, in domains such as

autonomous traffic management [4, 12], network routing [20] and

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

powerplant control [6]. What constitutes an “agent” in these prob-

lems is fluid and becomes a design choice rather than a constraint

of the domain.

The term agent factorizationwas introduced in [14] and describes
the breakdown of a problem into a multiagent system by finding

a representation of the full joint state-action space in the union

of the individual agent state-action spaces
1
. Yet despite the large

body of work in multiagent systems, and especially in multiagent

learning for coordination, this concept of designing the agent defi-

nitions has not featured much in existing research. Survey papers

proposing multiagent system taxonomies [2, 13, 15, 18, 19] tend to

focus more on the system architecture, that is, how agents interact

and communicate in the domain (if at all). However, these aspects

are inherently a function of the agent definition in terms of the

Markov decision process that each individual agent is solving.

One of the main challenges of pinning down the contribution

of agent definition to the final team performance is the inherent

complexity and inter-connectedness of multiagent systems. While

there is temptation to simply increase the number of agents in a

team without changing the individual agent definition, this does

not provide a fair comparison as it fundamentally changes the

capabilities of the team, the difficulty of the original problem and

so on. Furthermore, the problem domain often does not allow for

a straightforward comparison between different agent definitions.

For example, in robot soccer, each player can naturally be described

as an agent. Other definitions, such as controlling all defenders

with a single agent, etc., would require significant reconsideration

of how to represent the agent state-actions and interactions, not to

mention the practical implications of implementing such an agent.

In this work, we study the impact of agent definition to the per-

formance of multiagent learning for coordination in the warehouse

traffic management domain introduced in [4]. This domain is par-

ticularly well-suited to our study since the fundamental system

dynamics are decoupled from the structure of the multiagent team.

Thus, we can independently vary the number of agents in the team

and the total information available to the team without changing

the difficulty of the underlying problem.

1
Here we use “agent definition” to avoid confusion with other uses of the term “factor-

ization” in multiagent literature.
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We implement four different agent definitions and also compare

against a centralized learning solution. Our results highlight the

trade-offs associated with using lower-level definitions, where there

are more agents in the team that each have smaller state-action

spaces but consequently have a more localized view of the prob-

lem, versus higher-level definitions, where there are fewer agents

attempting to concurrently learn higher dimensional policies but

can each observe a larger portion of the joint space. In essence this

provides an insight into the balance between shifting the problem

complexity from the learning of coordination (across large num-

bers of less capable agents), to the learning of individual agent

policies, with the centralized agent representing the limit. We also

investigate the change in learning performance when more domain

information is provided to the agents. Here, our results show that for

lower-level agent definitions, the benefits of including additional

state information can outweigh the introduced challenges such

as increased state dimensionality, especially as the coordination

problem becomes more challenging.

The next section provides a summary of the various multiagent

taxonomies that have been proposed in the literature and situates

the concept of “agent definition” within these categories. In Sec-

tion 3 we introduce the multiagent traffic management domain,

which we will use to evaluate the four agent definitions formalized

in Section 4. The experimental setup is described in Section 5 with

results and analyses presented in Section 6. Finally in Section 7 we

conclude with a discussion on avenues for future investigation.

2 BACKGROUND
Several taxonomies have been offered over the past couple of

decades to characterize the scope of multiagent problems, specifi-

cally multiagent learning problems. As early as [19], researchers

in the field recognized the challenge of categorizing the myriad

problems that fall under this label, which is due to the many dif-

ferent axes along which multiagent systems can vary. In general,

multiagent problems can be grouped according to variations in

environment and agent interaction [19], application and architec-

ture [14], hierarchy [18], decentralization and task coupling [15],

homogeneity of the agents’ goals, actions and domain knowledge

[17], as well as by the class of learning algorithms used to solve the

problem [2].

One aspect that is often neglected is the choice of team structure

for the problem. The main reason for this is that many multiagent

learning domains elicit a natural agent definition, to the extent that

it becomes part of the definition of the problem rather than a design

variable. However, elements such as agent interaction and learning

architecture (e.g. the difference between independent learners and

joint action learners [5]) can be thought of as a direct consequence

of how an agent is defined. Parunak [14] highlighted this point and

also issued a warning:

When the problem is easily conceived in terms of

such naturally-occurring entities, agents can be ap-

plied fairly easily. However, factorizations that are

suggested by traditional analysis but do not corre-

spond to naturally occurring entities (such as the hier-

archical decomposition of a factory) can lead to very

inefficient agent architectures.

Queue to enter purple edge:
While waiting in queue, only 
AGVs en route (blue) count 
towards capacity or state of 
their current outgoing edge

Edge Costs
ce(t) = ce

travel + ce
add (t) ce(t)

Capacity

AGVs
Plan and update paths to 

minimize total traversal costs

CapacityQueue to enter green edge:
AGVs waiting to begin a 
delivery (white) do not 

count towards capacity or 
state of any edge

Capacity

Figure 1: The environment is described by a traffic graph
where each directed edge must obey strict capacity con-
straints. AGVs cannot enter edges that are already at capac-
ity. Those waiting to transition between edges continue to
occupy space on their current edge. The goal of the traf-
fic management domain is to find the set of additional cost
functions cadde (t) that result in the maximal number of suc-
cessful deliveries.

In this work, we consider teams of concurrently learning agents

where we can independently vary two aspects of the team structure,

i.e. the number of team members and the information available to

each team member. As summarized by [13], the challenges of con-

current learning fall under two main categories: structural credit

assignment and the dynamics of learning. Both of these areas have

enjoyed serious attention from the agents community, notably the

introduction of individualized reward shaping [1, 7] to address the

former, and teammate modeling [16] or turn-taking [3] to tackle the

latter. The overall consensus is that without careful team manage-

ment, both of these challenges become prohibitive with increased

team size and problem dimensionality. Thus, agent definition can

play a key role in modulating the complexity of the learning prob-

lem.

3 TRAFFIC MANAGEMENT DOMAIN
3.1 Domain Description
In this work, we study the effect of agent definition in thewarehouse

traffic management domain introduced in [4]. See Figure 1 for an

illustration of the domain set up. In this domain, M autonomous

ground vehicles (AGVs) deliver packages between various locations

in a warehouse. The routes in the warehouse are represented as a

high level traffic graph, G = (V, E), where each edge e ∈ E defines

a single direction of travel between two vertices of the graph, i.e. e =
(u,v) is the edge from vertex u to vertex v , where u,v ∈ V . AGVs

compute their paths across this graph according to some cost-based

planner such as A*. The costs associated with traversing each edge

are defined as the sum of a fixed and known cost of travel, costtravele ,

and an additional time-varying cost costadde (t) assigned by the

traffic management agents (described in the following subsection),

coste (t) = costtravele + costadde (t) . (1)

AGVs in the system have access to the instantaneous graph costs

calculated using Equation (1), and are able to replan their paths
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according to the latest costs at any edge transition. However, once

they begin traversing an edge, they are committed to continuing

along that edge until they reach their next transition. In the follow-

ing experiments, all AGVs greedily plan to minimize their traversal

costs directly according to the costs at the time of planning.

The domain defines an AGV capacity for each directed edge in

the graph cape , which imposes a constraint on the motion of the

AGVs. The capacity of an edge roughly translates to its available

bandwidth and can be determined based on the properties of the

underlying physical space represented by that edge (e.g. the size

of the free space). During an episode, the number of AGVs on an

edge, ne (t), cannot exceed the capacity of that edge. This means

that an AGV planning to transition to an edge which is at capacity

must wait on its current edge until there is space. While waiting, it

continues to count towards the capacity of its current edge. Thus,

without proper management, bottlenecks in the traffic graph can

result in cascading congestion throughout the network.

In the original domain, the delivery robots are randomly spawned

throughout an episode and are removed from the system once they

complete their assigned delivery. Here, we make a slight modifi-

cation such that all AGVs are initialized at the start of an episode;

however, once a delivery is complete, the AGV is not removed,

instead it is immediately assigned a new delivery mission which

begins at its current location. At this point, if the AGV must wait

to enter the first edge on its new path, it does not count towards

the capacity of any edge but is considered to be in a “holding zone”

until it begins traversal. Thus, the number of AGVs in the system

remains constant throughout the episode. This brings the domain

closer to the actual dynamics of an automated warehouse [8, 9]

and also allows for a more controlled comparison across simulation

runs.

3.2 Multiagent Traffic Management
The task of the traffic management system is to discover the ap-

propriate additional costs, cadde (t), to apply to each edge in the

traffic graph to incentivize the AGVs to avoid congested areas but

still reach their destinations in a timely manner. Given a specific

sequence of deliveries, an optimal solution to this problem exists;

however, the problem quickly becomes intractable for even mod-

erate graph sizes and AGV numbers. The challenge of problem

dimensionality also remains if we attempt to jointly learn the cost-

ing strategies for all edges. This motivates the use of a multiagent

learning framework inwhichwe assign individual agents tomanage

the traffic in local regions of the graph. The problem dimensionality

for each agent is therefore much lower compared to the joint learn-

ing case. However, the problem complexity now shifts to learning

coordinated policies across all the agents in the team such that

collectively they maximize the global objective. The interaction

between the multiagent traffic management team and the AGV

traffic is shown in Figure 2.

Given N agents in a traffic management team, the goal is to

concurrently learn the local costing strategies that result in the

joint policy Π∗ = {πi } ∀i ∈ {0, · · · ,N-1}, which globally produces

the highest number of successful deliveries. Agents are defined

based on their scope, that is, the component of the joint state that

they can observe, and the subset of the joint actions that they can

Traffic Management 
Agents

AGVs

Define cost of travel across each directed 
edge according to current traffic density

Plans across agent cost graph
High level planner

Low level planner Plans across obstacle map according to 
high level graph traversal plan

Figure 2: Hierarchical traffic management formulation, not-
ing the separation between the multiagent traffic manage-
ment system and the AGVs. The travel space is first decom-
posed into a high level graph representing the connectivity
of different regions in the map. The multiagent system de-
fines the cost of travel across this traffic graph, and theAGVs
use these costs to determine their sequence of edge traver-
sals. A lower level planner is then assumed to handle the lo-
cal collision avoidance procedures through the obstaclemap.
Figure from [4].

control. In the traffic management domain, this can be represented

as the set of edges that an agent manages, as well as the resolution

of the information available to each agent regarding the traffic on

those edges. For example, an agent may only know the number of

AGVs on each edge, or it may also know the exact progress of each

AGV along the edge. In general, given the state of each edge to be

se (t), then the state for agent i can be defined as,

si (t) = [se (t)] , ∀e ∈ Ei , (2)

where Ei is the set of edges managed by agent i . Thus, the output
actions of agent i are,

ai (t) = πi (si (t)) =
[
costadde (t)

]
, ∀e ∈ Ei , (3)

and the objective of the multiagent team is,

max

Π
G (Π) = total deliveries, (4)

s.t. ne (t) < cape ∀t , e ∈ E . (5)

4 AGENT DEFINITIONS
The trafficmanagement problem provides a domain inwhichwe can

investigate the effects of using different multiagent team definitions.

The graph structure provides a straightforward decomposition of

the joint space whereby subsets of E are assigned to individual

agents to manage. Moreover, practical considerations such as the

physical locality of an agent (how far it can sense and communicate)

can be naturally incorporated into how the subsets are defined.

In this section, we describe four variants in agent definition

which explore two separate axes in multiagent learning. The first

axis varies the number of agents in the team while keeping the

total information of the system constant. This explores the trade-

off between distributing the learning complexity at the agent level

(higher dimensional state) versus at the team level (more agents

concurrently learning to coordinate). The second axis considers
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the effect of state resolution to the learning performance in terms

of transience and convergence. Intuitively, higher resolutions can

discriminate between more system states and provide finer control.

However, this comes at the cost of a higher state dimensionality,

which can prohibit learning since the space of possible state-actions

becomes too large to explore effectively.

4.1 Link Agents
The first variant we describe is the agent definition presented in

[4]. Here, each link agent is assigned to a single directed edge, thus

the team consists of N = |E | agents. The link agent state is simply

defined as the total number of AGVs currently traversing the edge,

while the link agent output is the additional cost of travel for that

edge. That is,

s linki (t) = nei (t) , (6)

alinki (t) = caddei (t) , (7)

where ei is the edge assigned to link agent i .
Link agents represent the simplest agent definition available

to the traffic management domain, since they reduce each agent

to a single-input single-output policy. From an individual agent’s

perspective, this is a straightforward one dimensional learning

problem. However, from the team perspective, this represents a very

challenging multiagent learning setup. In this case, the structural

credit assignment problem is at its most severe [1]; each agent only

receives the global team performance as a learning signal, yet its

individual contribution to that reward becomes more ambiguous

the larger the team size. In addition, the contribution of agent noise

is also exacerbated as the number of agents in the team increases

[3].

4.2 Intersection Agents
The second variant in agent definition that we investigate decom-

poses the underlying traffic graph according to vertices rather than

edges. Specifically, each intersection agent is assigned to manage

AGV traffic on the set of incoming edges of a particular vertex. Thus,
the team consists of N = |V| intersection agents, whose states and

actions are,

sint .i (t) = [ne (t)], ∀e ∈ Ei , (8)

aint .i (t) = [cadde (t)], ∀e ∈ Ei , (9)

where Ei is the set of incoming edges assigned to intersection agent

i . Note that the state-action space for each intersection agent in the

team can be heterogeneous in this formulation since each agent’s

dimensionality is defined by the number of incoming edges they

manage. That is, the dimensionality of intersection agent i is |Ei |.
Compared to link agents, we generally expect an intersection

formulation of a warehouse graph to have fewer agents in the team

since for most graphs |V| < |E |. Thus, the challenges of structural

credit assignment and agent noise are reduced when compared

to the link agent formulation. However, this comes at the cost of

a higher dimensional learning problem for each of the individual

agents.

4.3 Incorporating Travel Time
The final two variants we consider in this study are focused on

the effect of state resolution to the multiagent learning problem.

In the link agent and intersection agent formulations described

in Sections 4.1 and 4.2, the state information only consists of the

current number of AGVs on the edges. Now we investigate the

effect of including additional AGV tracking information.

For each edge, we trackde (t), the amount of time remaining until

the next AGV completes its traversal and will attempt to transition

to a new edge or complete its delivery. This value can range from

the total time required to traverse an edge (if there are currently no

AGVs present) to zero, which represents the case where an AGV

has completed its traversal and will transition to a new edge at the

next timestep provided it does not violate Equation (5). This travel

time information is incorporated as an additional element in the

state vector for each edge. Thus, the travel-time-augmented link

agent state becomes,

slink, time
i (t) =

[
nei (t) ,dei (t)

]
. (10)

Similarly, the augmented intersection agent state is defined as,

sint ., time
i (t) = [ne (t) ,de (t)], ∀e ∈ Ei . (11)

Note that the action space for each agent definition remains the

same as in Equation (7) and Equation (9), respectively.

5 EXPERIMENTAL SETUP
In the following experiments we use the setup described in [4] and

represent the control policy of each agent as a single hidden layer,

fully connected neural network
2
. For the link agents (with and

without travel time information), we use 16 nodes in the hidden

layer, while for the intersection agents we set the number of hidden

nodes to four times the number of input nodes. For example, an

intersection agent managing AGV traffic on 3 edges will have 6

input nodes if it considers AGV travel time information, therefore,

its neural network control policy will contain 24 hidden nodes.

Without including travel time information, the intersection agent

will only have 3 input nodes, and therefore its neural network

policy will only have 12 hidden nodes. This scaling was chosen as it

allows us to maintain comparability between the representational

complexity of each of the agent definitions (see the final column of

Table 1).

To train the weights of the agent policies, we employ cooper-

ative coevolution [10] using the global team performance from

Equation (4) as the fitness evaluation for all policies in the currently

tested team. The following subsection provides a brief outline of the

cooperative coevolutionary algorithm (CCEA). Note, however, that

there is no requirement for using CCEAs to learn coordinated mul-

tiagent policies in this domain. Any distributed multiagent learning

algorithm, such as multiagent reinforcement learning [13], could be

applied in conjunction with any valid control policy representation,

provided that the learning algorithm can be trained using coarse

reward signals.

2
We use a logistic activation function at each layer and the final network output is

scaled by the base traversal time of the longest edge in the graph.
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Algorithm 1 Cooperative coevolutionary algorithm

1: Initialize N populations of K neural networks

2: for each Population do
3: Produce K successor solutions

4: Mutate successor solutions

5: for each Generation do
6: for k = 1 → 2K do
7: Randomly select a policy from each population

8: Add agent policies to team Tk
9: G = SimulateTraffic (Tk ) ▷ Equation (4)

10: Each agent i ∈ Tk is assigned fitness G

11: for each Population do
12: Retain K best networks

13: Produce K successor solutions

14: Mutate successor solutions

5.1 Cooperative Coevolution for Multiagent
Learning

Algorithm 1 provides the pseudo-code for our implementation of

CCEA. CCEAs evolve multiple populations in parallel; in our case,

each agent maintains a population of K = 10 neural networks

which represents its pool of potential control policies. At the start of

evolution, each control policy in the population produces a mutated

successor, resulting in a total population of 2K neural networks

(lines 2-4).

At each generation, a multiagent team is formed by selecting,

without replacement, one control policy from each agent’s popu-

lation (lines 7-8). This team is then evaluated by simulating their

performance in the domain (line 9). For our experiments, each

episode involves spawning AGVs in the environment that then plan

and execute paths based on the output traversal costs from the

multiagent traffic management team that is currently being tested.

More details on the traffic simulation are provided in the following

subsection. At the end of the episode, the performance of the entire

team, computed according to Equation (4), is assigned as the fitness

of each of the control policies that made up the team (line 10). Once

all 2K teams are evaluated, each agent then applies the selection step
by retaining the K control policies with the best fitness (line 12). In

our case, these are the control policies that resulted in the highest

number of completed deliveries, G. These K control policies then

undergo mutation and the process repeats (lines 13-14). For our

work, we applied a mutation rate of 10%, that is, at every generation

(epoch), each network weight had a 10% probability of undergoing

mutation, with added mutation noise drawn from N (0, 1).

5.2 Warehouse Traffic Graph
We ran our experiments on the simple traffic graph shown in Fig-

ure 3. We tested four instances of the domain that vary the number

of AGVs present in the warehouse. Each learning episode contained

{90, 120, 200, 400} AGVs with half starting at vertex 0 and the other

half initialized at vertex 1. Note that the maximum capacity of the

traffic graph is 272 AGVs (all edges full). All delivery missions orig-

inating at vertex 0 have a goal vertex 1 and vice versa, thus forcing

the AGVs to continually move between the two vertices. The layout

of the traffic graph is designed such that if all AGVs undertake

their A* path computed on the basic traversal costs ctravel , then the

0

1

2 3 4

5 6 7

8 9 10

cost travel = 28; capacity = 16
cost travel = 15; capacity = 10
cost travel = 14; capacity = 10
cost travel = 3; capacity = 5

Figure 3: The basic traffic graph. AGVs are initialized at 0 and
1, traveling to the opposite vertex, i.e. vertex 1 or vertex 0, re-
spectively. Edges (0, 1), and (1, 0) have the highest capacity
and represent the shortest path. The goal of the multiagent
traffic management team is to incentivize AGVs to take de-
tours to alleviate congestion. Figure from [4].

Table 1: Comparison of Agent Definitions

Team # Agents State Action Total # weights
structure dim. dim. in team

link 38 1 1 1254

link, time 38 2 1 1862

int. 11 {2, 3, 4} {2, 3, 4} 1126

int., time 11 {4, 6, 8} {2, 3, 4} 1670

cent. 1 38 38 1254

cent., time 1 76 38 1862

system will be severely congested along edges (0, 1) and (1, 0). The

goal of the multiagent team is to learn the optimal costing strategy

that incentivizes detours via vertices 2 − 10 to enable the highest

number of successful deliveries.

We compared the four agent definitions described in Section 4

against a centralized traffic management solution where a single

agent is tasked to apply costs on all edges of the traffic graph. To

maintain comparability, we set the total number of network weights

for the centralized agent to be equal to that of the link agent team.

Thus, the centralized agent also uses a neural network policy with

16 hidden nodes. Table 1 lists the relevant parameters of the six

tested agent team structures for the basic traffic graph.

6 RESULTS AND ANALYSIS
Each of the agent definitions were tested over 30 statistical runs

across which the neural network weight initializations were ran-

domized. Each statistical run consisted of 500 epochs (generations),

and at each epoch each team was evaluated in an episode 200

timesteps in length. The average team performances across the

epochs, along with 1σ standard deviations, are plotted in Figure 4,
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(a) 90 AGVs (b) 120 AGVs (c) 200 AGVs (d) 400 AGVs

Figure 4: Average team performance across training epochs. Mean and one standard deviation (from 30 statistical runs) are
shown for each set of experiments with increasing numbers of AGVs from (a)-(d). Best viewed in color.

(a) 90 AGVs (b) 120 AGVs (c) 200 AGVs (d) 400 AGVs

Figure 5: Best team performance across training epochs. Best viewed in color.

while Figure 5 shows the best performances across the 30 statistical

runs for each agent definition in each of the four domain variants.

These results demonstrate a number of interesting trends. The

first and possibly most noticeable result is that centralized learning

(without the inclusion of time information) performs quite well in

the mean for lower AGV numbers (90-200 AGVs). It experiences the

fastest learning transience and also exhibits a much smaller stan-

dard deviation over the mean performance compared to the decen-

tralized, multiagent learning performance. However, the limitations

of centralized learning can be seen most clearly in the comparison

between Figures 4c and 4d (and similarly in Figure 5). When the

underlying problem domain increases in complexity (in our case,

higher numbers of AGVs in the warehouse), the performance of

the centralized learners saturates while the decentralized learners

are able to continue improving. In fact, at 400 AGVs, the best team

performance of either of the centralized learners (with and without

AGV time) is lower than for the 200 AGV case at {658, 743} deliv-

eries compared to {658, 788}, respectively. The maximum number

of deliveries for each agent definition at the end of 500 episodes is

shown in Table 2.

The inclusion of AGV travel time into the agent state produces

a range of effects depending on the original agent definition. The

centralized learner experiences a significant decrease in the mean

and maximum learning performance when AGV time is included,

while the standard deviation remains roughly around the same

order of magnitude. Compare this to the difference between the

link agent definition with and without time information. Here we

Table 2: Maximum Deliveries after 500 Learning Epochs

Team 90 AGVs 120 AGVs 200 AGVs 400 AGVs

link 539 675 703 864

link, time 554 686 843 904
int. 545 668 844 834

int., time 544 662 837 844

cent. 545 659 788 743

cent., time 527 605 666 658

see the opposite relationship whereby the inclusion of AGV travel

time produces a substantial improvement in the link agent team

performance across all warehouse AGV numbers. In the case of

the intersection agent definition, the benefits of including time are

less pronounced. A slight trend in improved mean learning perfor-

mance can be observed as warehouse AGV numbers are increased;

however, there is very little difference between the maximum team

performances for either intersection agent definition. This suggests

that more “local” definitions derive a much greater benefit from ad-

ditional state information and that these benefits can outweigh the

challenges they introduce due to increased problem dimensionality.

In contrast, including time into the “global” centralized agent state

only serves to make the learning problem more difficult without

providing any apparent benefits to the overall performance.

Figure 5 shows the maximum achieved performance of any team

at each learning epoch. The only case in which a centralized agent
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(a) 90 AGVs (b) 120 AGVs

(c) 200 AGVs (d) 400 AGVs

Figure 6: Violin plots of the team performance distributions at the end of 500 training epochs. The ‘+’ symbol represents the
mean and the ‘×’ represents the median. All four multiagent team structures produce much wider distributions. Significant
skew is observed at lower AGV numbers, whereas at higher AGV numbers the distributions become more symmetrical.

performed better than a distributed agent was in the simplest prob-

lem domain with only 90 AGVs present in the warehouse. For all

other cases, the four distributed agent definitions were able to find

better joint policies than the centralized learners, with the gap in

improvement widening as the problem complexity rises (i.e. more

AGVs to route in the warehouse). However, Figure 5 shows that

distributed learning also displays a high degree of inter-epoch per-

formance variability, and this variability persists for more learning

epochs as the problem complexity increases. For example, in the

90 and 120 AGV problems, the maximum learning performance

converges after approximately 100-200 epochs; however, for 200 or

400 AGVs its takes well over 300 epochs. This is partially a result

of agent noise [3] and is exacerbated by the team randomization

which occurs at each epoch. As expected, both of these problems in-

crease in severity the more agents there are in the team. In contrast,

the centralized learners exhibit monotonically increasing perfor-

mance since evolution will always maintain the best policy from

the previous round.

The final result we present focuses on the spread of the team

performances at the end of 500 training epochs. The violin plots in
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Figure 6 show the distributions over the 30 statistical runs for each

of the agent definitions. The four link and intersection result distri-

butions have a much wider spread and are more heavily skewed

compared to the centralized learners. Both centralized learners

achieved relatively normal distributions with strong agreement

between the means and medians, whereas greater disparity can be

seen in the corresponding values for the distributed learners. This is

another demonstration of the variability in performance that results

from agent noise and randomization in the teams during coopera-

tive coevolution. However, for all six agent definitions, the spread

in final team performance increased as the underlying problem

complexity increased, i.e. more AGVs present in the warehouse.

The shape of the final distributions also highlights an interesting

relationship between the performances of the two link agent defi-

nitions. Both sets of distributions exhibit peaks around the same

values, see Figures 6a, 6b and 6c. However, for the link agents in-

cluding time information, the median performance tends towards

the higher valued peaks, whereas the opposite case occurs for the

basic link agents. Indeed, each of the peaks in the distributions

correspond to local maxima in the joint state-action space. Our

results support the notion that the more “local” the agent definition,

the more susceptible the team is to getting stuck in local maxima.

The AGV travel time information provided sufficient additional

domain scope to the link agents to substantially improve their per-

formance, and this improvement is consistent across increasing

domain complexity. In contrast, the intersection agent states could

already access a wider portion of the joint space, thus the bene-

fits drawn from having additional time information tended to be

balanced out by the doubling in state dimensionality.

7 DISCUSSION
When formulating a problem as a multiagent coordination task, the

individual agent definitions can result in substantial differences in

the learned team performance. Therefore, in multiagent domains

that do not present a natural agent definition, it is important to

consider these implications when adjusting agent complexity and

team coordination complexity. Our study provides some insight

into these trade-offs, demonstrating that very “local” definitions are

more susceptible to local optima, which can be overcome by provid-

ing more state information, despite the overhead of increased state

dimensionality. On the other end of the spectrum we show that in-

cluding the same additional information can hinder learning when

a sufficiently “global” view of the problem is already available to

the agents. In the latter case, the increased problem dimensionality

outweighs the potential benefits of incorporating more information

from the joint state.

Our comparison of centralized, intersection and link agent defi-

nitions also showed that for simple domains, it may sometimes be

preferable to use a centralized learner. The combined benefits of

avoiding issues related to agent noise and structural credit assign-

ment reduces the overall variability in learning performance and

can provide faster initial learning transience. However, as problem

complexity increases, the performance of centralized learning tends

to saturate whereas distributed learners are able to continue im-

proving the team performance. The turning point of this trade-off

is extremely challenging to pin down. Indeed it remains an open

question as to howwe can formalize this trade-off for any particular

agent definition and any particular problem domain.

As explained in the introduction, the warehouse traffic man-

agement domain is ideally suited to studying the effect of agent

definition on multiagent learning for coordination since the team

formulation is decoupled from the complexity of the underlying

problem. In general, we expect our findings to be applicable to other

multiagent coordination domains which have similar characteris-

tics. That is, where the agents participate in the domain not as the

physical actors in the space, but by controlling the behavior of the

physically interacting elements. For example, through a hierarchi-

cal command structure such as packet routing in a communication

network [20] or as designers of individual sub-components of a

mechanism [11]. How the learning trends described in this paper

extend more broadly to other classes of multiagent domains is a

highly relevant question for further research.

This study is intended as a starting point for further, more formal

investigations into the effect of agent definition. As stated at the

start, and demonstrated in our results, the definition of an agent

in the context of its domain has a significant effect on team perfor-

mance when learning to coordinate. So far we have tested a handful

of possible agent definitions on a single multiagent domain under

different degrees of problem complexity. There remain a number of

axes of variation that are yet to be explored. These include agent

heterogeneity as well as the presence of hierarchical structures

within the multiagent team, the former of which we encounter

only incidentally in this work. These and other variations can pro-

vide greater insight into the overall impact of agent definition on

multiagent learning for coordination.

Code for the warehouse domain is available open source at https:

//github.com/JenJenChung/multiagent_learning.
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