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ABSTRACT

Reinforcement Learning (RL) has achieved a degree of success in
control applications such as online gameplay and robotics, but has
rarely been used to manage operations of business-critical sys-
tems such as supply chains. A key aspect of using RL in the real
world is to train the agent before deployment, so as to minimise
experimentation in live operation. While this is feasible for online
gameplay (where the rules of the game are known) and robotics
(where the dynamics are predictable), it is much more difficult
for complex systems due to associated complexities, such as un-
certainty, adaptability and emergent behaviour. In this paper, we
describe a framework for effective integration of a reinforcement
learning controller with an actor-based simulation of the complex
networked system, in order to enable deployment of the RL agent
in the real system with minimal further tuning.
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1 INTRODUCTION

Business-critical systems need to continually make decisions to
stay competitive and economically viable in a dynamic environ-
ment. Reinforcement Learning (RL) [9, 11] is a class of machine
learning algorithms that can be used for controlling such complex
systems in an adaptive and flexible manner. The goal of the system
controller (also called RL agent) is to learn to take the best possible
control actions in each possible state of the system, in order to
maximise long-term system objectives. A crucial aspect of RL is the
computation of next state and associated rewards for the chosen
action(s), in a closed loop to enable learning. The setup is illustrated
in Figure 1. This paper argues that the use of analytical expressions
for modelling the environment is infeasible for complex systems,
and advocates an agent/actor based modelling abstraction [1, 8] as
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an effective modelling aid to understand the dynamics of such com-
plex systems. We present a framework that uses RL for exploring
policies and deciding control actions, and actor-based simulation
for performing accurate long-term rollouts of the policies, in order
to optimise the operation of complex systems. We use the domain
of supply chain replenishment as a representative example.

2 PROBLEM FORMULATION

We illustrate the generic reinforcement learning problem in the
context of supply chain replenishment, which presents well-known
difficulties for effective control [7, 10]. The scenario is that of a
grocery retailer with a network of stores and warehouses served
by a fleet of trucks for transporting products. The goal of replen-
ishment is to regulate the availability of the entire product range
in each store at all times, subject to the spatio-temporal constraints
imposed by available stocks, labour capacity, truck capacity, trans-
portation times, and available shelf space for each product in each
store. A schematic of the flow of products is shown in Figure 2.

From operational perspective, each store stocks i = {1,...,k}
unique varieties of products, each with a maximum shelf capacity
ci,j where j < n is the index of the store. Further, let us denote by
xi,j(t) the inventory of product i in store j at time ¢. The replen-
ishment quantities (actions) for delivery moment d are denoted by
a;,j(tg), and are to be computed at time (t; — A) where A is the
lead time. The observation O(t; — A) consists of the inventory of
each product in each store at the time, the demand forecast for
each product between the next two delivery moments, and meta-
data such as unit volume and weight, and shelf life. The inventory
xi,j(t) depletes between two delivery moments (d — 1) and d, and
undergoes a step increase by amount a; ;(t4) at time t.

The reward r(t4_1) is a function of the actions a; j(t;_1) and the
inventory x; j(t) in t € [t4_q,t4). Two quantities are of particular
interest: (i) the number of products that remain available throughout
the time interval [t;_;,t4), and (ii) the wastage of any products

Actions a(t)

* State s(t) ‘
Reward r(t — 1)

Figure 1: Interaction of RL agent with an environment.
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Figure 2: Schematic of supply chain replenishment use case.
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Figure 3: Proposed approach.

that exceed their shelf lives. Mathematically, we define this as,
k
count(x;j j < p) Die1 Z?:l wi, j(td-1)
- k
kn iz Zlexi,j
where count(x; ; < p) is the number of products that run out
of inventory (drop below fraction p) at some time t € [tg_q, ),
wi, j(tg—1) is the number of units of product i in store j that had to

be discarded in the time interval because they exceeded their shelf
lives, and Xj ; is the shelf capacity for product i in store j.

r(tg-1) =1-

>

3 METHODOLOGY

A reinforcement learning problem is described by a Markov De-
cision Process (MDP) [11] represented by a tuple (S, A, R, P,y).
Here, S is the set of states of the system, A is the set of control ac-
tions, R is the set of possible rewards, P is the (possibly stochastic)
transition function from {S, A} — 8, and y is a discount factor
for future rewards. In several cases, the agent is unable to observe
the state space entirely, resulting in a partially-observable MDP
or POMDP [11]. Observations O are derived from S to represent
what the agent can sense. The RL agent should compute a policy
O — A that maximises the discounted long-term reward. We use
a form of RL known as A2C [6] to compute the actions. The Critic
evaluates the goodness of the current system state, while the Actor
chooses an action that maximises the improvement in value in the
next state.

We propose an actor based simulation framework [4] for training
the RL agent in a synthetic environment as shown in Figure 3. The
proposed framework contains two control loops: (i) a model centric
loop for mapping A — O based on the actions of the RL agent
and their effect on the system, and (ii) a real time control loop. We
consider an extended form of actor model [3] to closely mimic the
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Figure 4: Evolution of rewards during training.
complex systems; and adopt simulation as an aid [2] to compute
micro-behaviours and observe emerging macro behaviours, overall
system state, observations, and rewards over time.

4 EXPERIMENTS AND VALIDATION

We use a data set spanning one year derived from a public source
[5] for experimentation. A total of 220 products were chosen from
the data set, and their meta-data (not originally available) was input
manually. The time between successive delivery moments was set
to 6 hours (leading to 4 deliveries per day). The lead time A was
3 hours. Forecasts were computed using a uniformly weighted 10-
step trailing average for each product. The store capacity, truck
volume and weight capacity, and labour counts were computed
based on the order volumes seen in the data. We deliberately set
the truck volume constraint such that the average order numbers
would severely test the transportation capacity of the system. The
initial normalised inventory level for each product is set to 0.5 at the
start of each training ‘episode’, and the level below which penalty
is imposed is set to p = 0.25. Of the order data set, the first 225 days
(900 delivery moments) were used for training, while the remaining
124 days (496 delivery moments) were retained for testing.

Figure 4 shows the training of the reinforcement learning al-
gorithm in conjunction with the actor-based simulation, over 15
episodes each spanning the 900 delivery moments from the train-
ing data set. The average reward, computed over all 220 products
and all DM, is seen to increase as training proceeds. The reward
is compared with a simplified version of an industry-standard re-
plenishment heuristic, which aims to maintain the inventory levels
of all products at a constant level. We see that the reward at the
end of the training exercise exceeds the heuristic performance, and
this advantage is retained on the test data set as well (plotted using
separate markers at the ends of the curves).

5 SUMMARY

An efficient learning framework with realistic model is argued nec-
essary to control complex business systems. A control framework
that uses reinforcement learning and an actor-based simulation is
presented to support our argument. Initial evaluations show that
training and policy evaluation of RL agent using proposed approach
is feasible (in terms of computational time and expense) and effec-
tive as compared to traditional aggregated analytical models.
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