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ABSTRACT
Scoring systems give points to candidates according to their po-
sitions and are, for example, used in elections and sports tourna-
ments. We study the influence that the design of such systems has
on the outcome by introducing two related decision problems. The
problem Scoring System Existence asks whether for a given set
of profiles there exists a scoring system that makes some distin-
guished candidate win, whereas Closest Scoring System bounds
the choice of an alternative scoring system by some given distance.
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1 INTRODUCTION
Scoring systems are, for example, used in elections to determine
the winners. The votes are linear orders over the set of candidates,
who get points according to their positions in the votes. Winners
are those candidates with a maximum score. This principle is also
applicable in other situations, like sports competitions for example.
In a Formula 1 race the drivers correspond to the candidates, and
their placement in each race represents a vote. The points are given
according to their final position in the race. Another example is
the Eurovision Song Contest, where the points are given to the
candidates through the voting of the single countries.

The design of a scoring system is a crucial point. There are some
obvious criteria that should be fulfilled, like a decreasing sequence
of points and a reasonable distance between the significant posi-
tions. A scoring system used in sports competitions that give the
same number of points to the first and second place will hardly be
seen as a good rule. The history of the points given in Formula 1
races, however, shows that several slight adaptions of the points
have occurred over the years. A natural question is: How much
impact has such a change on winner determination? And from the
point of view of a manipulator: Can I find a scoring system that
makes some desired candidate win? Such questions are particularly
important when the outcome of the election involves a lot of money
or prestige. In this paper, we give a theoretical background to this
problem by introducing the problem Scoring System Existence.
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As argued above, the existence of only weird scoring systems may
not help, as there is no chance to implement them. Therefore, we
consider different restrictions on the alternative system and intro-
duce the problem Closest Scoring System, where the aim is to
find an alternative scoring system that has a bounded distance to
the original one.

2 PROBLEM DEFINITIONS
An election (C,V ) consists of a set C ofm candidates and a profile
V = (v1, . . . ,vn ) containing linear orders overC . A scoring system
for (C,V ) is defined through a vector ®α = (α1, . . . ,αm ) ∈ Rm≥0 with
α1 ≥ α2 ≥ · · · ≥ αm . The points a single candidate c ∈ C gets in
this system is the sum of the points according to its position in the
votes:

score ®α(C,V )(c) =
n∑
i=1

αpos(vi ,c),

where pos(v, c) is the position of candidate c in the linear order v .
The winners according to this scoring system are then all candidates
with the maximum score. Prominent examples of scoring systems
are Borda with the vector (m − 1,m − 2, . . . , 0) and Plurality with
the vector (1, 0, . . . , 0).

Now, we will introduce the problem Scoring System Existence,
clarify its importance and compare it to other problems studied
before. The completely unconstrained problem is defined as follows.

Scoring System Existence

Given: A set of candidates C = {c1, c2, . . . , cm }, a list of pro-
files V1, V2, . . . , VN over C , and a candidate p ∈ C .

Question: Is there a scoring vector ®α = (α1, α2, . . . , αm ) ∈ Rm≥0
with αm = 0, such that p is the unique winner of election
(C, Vj ), 1 ≤ j ≤ N , with respect to ®α?

We consider the unique winner case, since the non-unique win-
ner case is uninteresting insofar as vectors that give the same num-
ber of points to almost all candidates are often a trivial solution
in the unconstrained case. This definition can be combined with
restrictions on the scoring vector (e.g., a certain value at a specific
position) in order to get more realistic choices. Note that as a scor-
ing system can always be reshaped to an equivalent scoring system
fulfilling αm = 0, we generally assume that αm = 0 holds.

The problem is defined as an election problem, but it is applicable
to many different settings. In terms of elections, it models the
situation where the chair of the election tries to find a scoring
system to guarantee certain outcomes for different possible profiles.
This situation could occur, for example, if the chair already knows
predictions about the votes before the election and the system itself
has been established. Another situation where this problem might
occur is (online) surveys or studies in which the participants (i.e.,
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the voters) were previously unaware of the actual system. Here,
the originator of the survey or study can influence the outcome
by choosing a system that supports its preferred alternative or
hypothesis. Another major scope of the problem is competitions,
especially sports competitions. In competitions such as the Formula
1 or the Eurovision Song Contest in which scoring systems are used,
the races or juries act as voters. Again, the question is whether a
prior change of the system, based on suspected placements, or a
subsequent change based on the actual placements, can guarantee
certain outcomes. This question is particularly interesting if people
in charge might have an interest in the success of a certain team
because of preferences, arrangements or bets.

In all these cases, one has to keep in mind that arbitrary sys-
tems, which follow no idea or intuition, are suspicious and make
a targeted modification of the system very obvious. If there ex-
ists a scoring system that makes the preferred candidate a unique
winner, the manipulative agent may be interested in making her
suggestions for changing the system as small as possible. We model
this variant by measuring the difference between the original and
the new scoring system using distances. Different distances may
be used in order to capture specific kinds of changes. Thus, we
consider the problem where we ask whether there is an alternative
scoring system making the distinguished candidate the unique win-
ner, while the distance between both vectors is bounded by some
value. For a distance D on arbitrary sized vectors, the problem is
formally defined as follows.

D-Close Scoring System

Given: A set of candidates C = {c1, c2, . . . , cm }, a list of
profiles V1, V2, . . . , VN over C , a scoring system ®α =
(α1, α2, . . . , αm ) ∈ Rm≥0 with αm = 0, a distance limit
K ∈ R≥0, and a candidate p ∈ C .

Question: Is there a scoring system ®α ′ = (α ′
1, α

′
2, . . . , α

′
m ) ∈ Rm≥0

with α ′
m = 0, such that p is the unique winner of election

(C, Vj ), 1 ≤ j ≤ N , with respect to ®α ′ and D( ®α, ®α ′) ≤
K?

We will illustrate the above problem definitions with a short
example including one profile.

Example 2.1. Assume we are given an election (C,V ) with C =
{a,b, c,d} and V = (v1,v2,v3) as follows:

v1 : a > b > d > c

v2 : d > c > b > a

v3 : c > b > a > d .

If the election (C,V ) is evaluated by the scoring system character-
ized by ®α = (4, 2, 1, 0)we receive score ®α(C,V )(a) = 5, score ®α(C,V )(b) =
5, score ®α(C,V )(c) = 6, and score ®α(C,V )(d) = 5. Thereby, c would be
the unique winner of the election.

Suppose we want to check whether there exists a scoring system
®α ′ ∈ N4≥0 with α ′

4 = 0 in which our preferred candidate b is the
unique winner of the election. Note that b is the unique winner of
the election if and only if score ®α

′

(C,V )(b) > score ®α
′

(C,V )(x) holds for
x ∈ {a, c,d}. Therefore, b is the unique winner of the election if and
only if 2 · α ′

2 > α ′
1 and α

′
2 + α

′
3 > α ′

1 hold, with the first condition
being contained in the second one due to α ′

2 ≥ α ′
3. Thus, (1, 1, 1, 0)

and (2, 2, 1, 0) would, for example, be valid solutions for Scoring

System Existence. If however we, require that the Euclidean dis-

tance D2( ®α , ®α ′) =
√∑4

j=1(α j − α ′
j )2 between ®α and ®α ′ is at most

√
2, they are not solutions for D2-Close Scoring System because

they deviate too much from ®α = (4, 2, 1, 0), with a respective Eu-
clidean distance of

√
10 and

√
4. On the other hand, (4, 3, 2, 0) and

(3, 2, 2, 0) would be possible solutions within a distance of
√
2 to

®α = (4, 2, 1, 0).
Using a linear program formulation, it can be shown that the

unrestricted problem can be solved in polynomial time.

Theorem 2.2. Scoring System Existence is in P for ®α ∈ Rm≥0,
Qm≥0, and N

m
≥0.

For the more restricted problem D-Close Scoring System the
situation is different. The complexity varies for different domains
of the scoring vector and depends on the actual distance. Note that
reducing the election(s) to a (integer) linear program is highly rele-
vant to both the theoretical efficient solution (see Theorem 2.2) and
the solution of the computational hard problems in practice. Apart
from that, the transformation is a useful tool in the construction of
hardness reductions.

Related Work. The study of election problems from a computa-
tional point of view belongs to the field of Computational Social
Choice. A special case of our problem has already been studied by
Baumeister et al. [2]. They showed that Scoring System Existence
for one profile is NP-complete for (α1, ...,αm−4,x1,x2,x3, 0) with
xi = 1 for at least one i ∈ {1, 2, 3}, if we a assume that the votes
are given in succinct representation. The technical requirement of
succinct representation means that a profile is stored as a list of
votes with their corresponding multiplicity instead of listing each
vote separately. However, Theorem 2.2 implies that their problem
for unconstrained vectors can be solved efficiently. Uncertainty
about the used voting rule has also been studied by Elkind and
Erdélyi [5]. They considered the problem where a set of possible
voting rules is given and a manipulator tries to ensure the victory
of some distinguished candidate regardless of the voting rule used.
Another related problem is the robustness of elections studied by
Shiryaev et al. [7] and Bredereck et al. [3]. They take into account
the minimum degree of change necessary regarding the votes to al-
ter the outcome of the election. The relationship between distances,
elections, and voting rules has been studied, by Eckert et al. [4],
Elkind et al. [6], and Baumeister et al. [1].

3 CONCLUSIONS
We have introduced the Scoring System Existence problem and
the D-Close Scoring System problem to provide a theoretical
background for the analysis of the influence on the design of scoring
systems. In future work, the exact computational complexity of
these problems should be considered, as well as an experimental
evaluation of real-world data. The next step would be to consider a
distribution of profiles, e.g. based on predictions, rather than a set of
profiles. Here one would look for a scoring system that maximizes
the chances of success.
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