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1 INTRODUCTION
The Internet of Things (IoT) is developing rapidly, and it is estimated

that by 2025 22 billion active devices will be in the IoT [13]. Since

it is impossible to let the often low-powered IoT devices perform

all computing tasks, some of which are highly computationally

demanding, fog computing, which extends the cloud to be closer

IoT devices, has been proposed as a solution [3].To make the most of

the fog resources and maximise the efficiency, good fog computing

resource allocation mechanisms are needed.

To address this challenge, researchers have proposed many re-

source allocation mechanisms for fog computing or similar comput-

ing paradigms [2, 4, 7, 8, 10, 19, 20]. However, most of these mech-

anisms were not specifically designed for settings where users act

strategically to maximise their utility. Therefore, some researchers

have proposed truthful mechanisms that incentivise users to truth-

fully reveal their private information [5, 12, 16–18, 21, 22]. However,

these approaches cannot be applied directly to our model due to

subtle but important differences. For example, [18] assumes single-

minded users (i.e., users who do not get any value for a partially

executed task). However, users in our model can get partial value

for a partially executed task.

In this paper, we are the first to formulate the fog computing re-

source allocation problem as a constraint optimisation problem that

considers bandwidth constraints (a key challenge in IoT settings)

and allows flexible allocation of virtual machines (VMs) and of the

bandwidth. Furthermore, we introduce a novel dominant-strategy
incentive compatible (DSIC) and individually rational (IR) mecha-

nism to maximise social welfare.
1
DSIC mechanisms guarantee that

regardless of others’ behaviours, users always maximise their utility

by reporting truthfully. Furthermore, under an IR mechanism, no

user will get a negative utility by participation.

1
We define social welfare as the difference between the value and the operational costs

of all tasks.
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2 THE FOG RESOURCE MODEL
Next, we briefly describe our fog computing resource allocation

model, which is shown in Figure 1. It contains a set P of geo-

distributed micro data centres (MDCs) and a set L of locations,

which are interconnected through a set E of data links. Further-

more, there is a set El of endpoints in each location l , and every

MDC p ∈ P has a set R of limited computational resources. More-

over, there are Ap,r units of type r ∈ R resources in MDC p, and
the unit operational cost of resource r in MDC p is op,r . In addi-

tion, the bandwidth capacity and the unit operational cost of link

(j,k) ∈ E, which are assumed to be symmetrical for simplicity, are

bj,k and oj,k respectively. Furthermore, the fog provider controls

the resource allocation of the fog through a central control system.

Figure 1: General view of a fog computing system.

Fog users with tasks arrive over time, and I denotes the set of
all tasks. Note that we adopt a continuous time system, but the

tasks can only start execution at discrete time steps, denoted by

the set T = {1, 2, . . . , |T |}. Each task i ∈ I is owned by a user,

which is also denoted as i for simplicity. In addition, the arrival

time of task i isT a
i ∈ [0, |T |], which is the time when user i becomes

aware of its task i , and the time interval that the task can run is

from T si to T
f
i . Here, we assume that no tasks arrive at the exact

same time. The operational cost of task i is denoted as oi , which
is the total cost of task i . Furthermore, we also assume that every

task only requires one VM to run but may require connections

to several endpoints, and the endpoints of tasks do not change

locations over time, VMs can migrate without costs, and all tasks

are preemptive. Finally, we focus on time-oriented tasks, which are

common in fog computing. Such a task i needs a certain capacity

of resources for a time length ti to get its full value, but can still
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get part of the value if the processing time is less than ti . Formally,

the type of task i is a tuple θi = (T a
i ,T

s
i ,T

f
i , vi , {ai,r }r ∈R , {Γ

i
l }l ∈L),

where ai,r denotes the amount of resource r ∈ R required, and Γil
denotes the bandwidth demand between its VM and location l ∈ L.
For simplicity, bandwidth demands are symmetrical. The valuation

function is vi = {vi,0,vi,1, . . . ,vi,ti }, where vi,t is the value when
task i gets usage time of t time steps. We make a mild assumption

that the value monotonically increases with usage time.

Next, when receiving the type θi for task i , the fog provider

will decide the resource allocation scheme λi to this task, and the

payment p̃i right away. Formally, the fog provider solves a con-

straint optimisation problem, and the decision variables are: (1)

{zip,t ∈ {0, 1}}i ∈I,p∈P,t ∈T , indicating that the VM of task i is placed

in MDC p (zip,t = 1), or not (zip,t = 0) at time step t . (2) { f il,p, j,k,t ∈

R+}i ∈I,l ∈L,p∈P,(j,k )∈E,t ∈T , indicating allocation of the bandwidth

on each link for task i at time step t . (3) p̃i (λi ,θ
⟨T a
i ⟩) ∈ R+, denoting

the payment of task i , which is a function of the allocation: λi and

all tasks received byT a
i : θ

⟨T a
i ⟩

. So, for task i , its resource allocation

scheme λi = {zip,t }i ∈I,p∈P,t ∈T ∪{ f
i
l,p, j,k,t }i ∈I,l ∈L,p∈P,(j,k )∈E,t ∈T

and its utility is ui = vi (t̃i ) − p̃i (λi ,θ
⟨T a
i ⟩). The objective function

maximises the total social welfare:

maximise

λi

∑
i ∈I

vi (
∑

p∈P,t ∈T
zip,t ) − o (1)

where
o =

∑
i ∈I,r ∈R,p∈P,t ∈T

ai,rz
i
p,top,r+

∑
i ∈I,l ∈L,p∈P,(j,k )∈E,t ∈T

2oj,k f
i
l,p, j,k,t

Then, the following equations are the constraints.

Subject to:

∑
p∈P

zip,t ≤ 1 ∀i ∈ I, t ∈ T (2a)∑
i∈I

zip,t ai,r ≤ Ap,r ∀p ∈ P, r ∈ R, t ∈ T (2b)

zip,t = 0 ∀i ∈ I, p ∈ P, t < T si or t > T fi (2c)∑
j :(j,p)∈E

f il,p, j,p,t = Γil z
i
p,t ∀p ∈ P, i ∈ I, l ∈ L, t ∈ T (2d)∑

k :(l,k )∈E

f il,p,l,k,t = Γil z
i
p,t ∀p ∈ P, i ∈ I, l ∈ L, t ∈ T (2e)∑

j :(j,k )∈E

f il,p, j,k,t =
∑

j :(k, j )∈E

f il,p,k, j,t ∀p ∈ P, k ∈ P, i ∈ I, l ∈ L, t ∈ T (2f)∑
i∈I ,l∈L,p∈P

f il,p, j,k,t ≤ bj,k ∀(j, k) ∈ E, t ∈ T (2g)

f il,p, j,k,t ≥ 0 ∀i ∈ I, l ∈ L, p ∈ P, (j, k) ∈ E, t ∈ T (2h)

The above optimisation problem is a mixed integer linear pro-

gramming problem. Unfortunately, this problem is NP-hard.

3 FLEXIBLE ONLINE GREEDY MECHANISM
The key idea of our mechanism is that it only commits the usage

time t̃i to task i but keeps its allocation scheme flexible, so that it

can achieve higher social welfare. We briefly describe our mech-

anism flexible online greedy (FlexOG) as follows. After receiving

a report of task i , FlexOG finds the allocation that maximises the

social welfare of all unfinished tasks given the constraints of their

committed usage time. Then, FlexOG computes the usage time t̃i
for task i from its corresponding allocation scheme, and commits it

to task i , which means that task i is guaranteed to get t̃i usage time

before its finish time T
f
i . Afterwards, FlexOG requires payment p̃i

for task i as the marginal total operational cost.

Theorem 3.1. The FlexOG mechanism is DSIC and IR.

4 SIMULATION RESULTS
We have tested the robustness of our mechanism by running sim-

ulations with different parameters. To this end, Figure 2 shows

a representative result below due to space limitation.
2
Here, we

compare the total social welfare achieved by FlexOG with other

benchmarks under different resource coefficients k , which indicates

the abundance of resources (i.e., a higher k means that there is less

competition for resources). We use synthetic data in this simulation,

and the three benchmarks are offline optimal (optimally allocate re-

sources knowing all tasks’ information beforehead), online greedy

(OG; it greedily allocate resource for each newly arrived task and

commit that allocation scheme), social welfare maximisation online

auction 2 (SWMOA2; a variant of SWMOA [16], which greedily

allocate resource for each new arrived task based on a virtual cost

and commit that allocation scheme).

Figure 2: The social welfare achieved by four mechanisms.

We can see from the figure that FlexOG consistently achieves bet-

ter social welfare than two truthful benchmarks (OG and SWMOA2),

and achieves around 90% social welfare of the upper bound (offline

optimal). FlexOG performs better than OG because the way in

which committed time steps are allocated to tasks is flexible. Due to

this, it can reschedule unfinished tasks to allocate more time steps

for newly arrived tasks.

5 CONCLUSION
This paper formulates the fog computing resource allocation prob-

lem as a constrained optimisation problem and proposes a novel

truthful online mechanism for solving it. In the future, we plan

to design online mechanisms that combine machine learning and

online mechanism design to further improve social welfare.
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2
This figure is with 95% confidence intervals based on 200 trials, and the relative

tolerance of the CPLEX optimizer is set to 1% for offline optimal, and 5 % for others. (A

1% tolerance means that the optimizer stops when a solution is within 1% of optimality)
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