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ABSTRACT
Mobile sensors, e.g., unmanned aerial vehicles (UAVs), are becom-
ing increasingly important in security domains and can be used for
tasks such as searching for poachers in conservation areas. Such
mobile sensors augment human patrollers by assisting in surveil-
lance and in signaling potentially deceptive information to adver-
saries, and their coordinated deployment could be modeled via the
well-known security games framework. Unfortunately, real-world
uncertainty in the sensor’s detection of adversaries and adversaries’
observation of the sensor’s signals present major challenges in the
sensors’ use. This leads to significant detriments in security perfor-
mance. We first discuss the current shortcomings in more detail,
and then propose a novel game model that incorporates uncertainty
with sensors. The defender strategy in this game model will con-
sist of three interdependent stages: an allocation stage, a signaling
stage, and a reaction stage.
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1 INTRODUCTION
In many real-world situations, there are not enough security re-
sources, such as human patrollers, to protect all possible targets
from attackers and prevent illegal activities. Security games have
been used to model and solve strategic security resource alloca-
tion in these situations in the past decade for problems such as
protecting airports, traffic enforcement, protecting elections, and
protecting borders [3, 7, 9].
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Figure 1: UAV monitoring area by capturing thermal in-
frared images of people (in black box).

Concurrently, mobile sensors such as unmanned aerial vehicles
(UAVs or drones) have been introduced for security purposes with
an increasing importance in domains such as traffic enforcement
[8] and wildlife poaching prevention [5]. They are used to detect the
actions of the adversaries, to assist human patrollers, and to signal
potentially deceptive information to adversaries. The security game
framework has been augmented and applied to the coordinated
deployment of human patrollers and mobile sensors as well as
strategic signaling [11].

Unfortunately, real-world circumstances inevitably involve un-
certainty in both the sensors’ detection of adversaries and adver-
saries’ imperfect observation of sensors’ signals, leading to chal-
lenges in successfully using sensors in security domains. As a key
application involving both types of uncertainties, consider that
to combat poaching, UAVs equipped with thermal infrared (heat-
detecting) cameras are used to locate poachers at night when poach-
ing typically occurs [1] and sometimes send warning signals to
poachers through onboard lights for deterrence. Fig. 1 shows an
example of a UAV used for this task, and a corresponding thermal
infrared image. To assist the UAV crew in detecting poachers and
animals in these videos automatically, a decision aid called SPOT
was developed [2]. Although useful, detectors such as SPOT, [6],
and [10] suffer from imperfect detection. Additionally, the presence
of the UAV or signals may not be observed by the poacher, for
example due to occlusions by trees.

Ignoring such uncertainties would result in significant detri-
ments in security performance. Consider a sensor with a high false
negative rate as an example. In this case, it could be beneficial for
the human patroller to go and check a nearby location even if the
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sensor in the location does not detect any adversary in order to
confirm that there is no adversary there, rather than fully trusting
the sensor. Fully trusting the sensors’ capability of detecting ad-
versaries leads to a wrong belief of the location of the adversary,
and the efficiency of patrol can be even worse than not having
any sensors. Similarly, when the uncertainty in the adversary’s
observation of the signal is high, the attacker may not be deterred
even if the sensor sends out the signal indicating the presence of a
patroller nearby. Not considering this uncertainty will lead to an
overly optimistic estimation of the probability that the adversary
will give up the attack. We aim to address this limitation and pro-
vide an efficient patrol plan that works in an environment with
uncertainty.

2 MODEL
We consider a security game played between a defender and an
attacker, who seeks to attack one target. The defender possesses
k human patrollers and l sensors, and aims to protect N targets.
Let [N ] = {1, 2, ...,N } denote the set of all targets. Let U d/a

+/−
(i) be

the defender/attacker (d/a) utility when the defender successfully
protects/fails to protect (+/−) the attacked target i . By convention,
we assume U d

+ (i) ≥ 0 > U d
− (i) and U a

+ (i) ≤ 0 < U a
− (i) for any

i ∈ [N ]. The underlying geographic structure of targets is captured
by an undirected graphG = (V ,E). Mobile sensors cannot interdict
an attack, though they can notify nearby patrollers to respond.
If a target i is attacked, then we assume that a patroller at any
neighboring target of i can move to i and successfully interdict
the attack. Mobile sensors will send one of two signals – the quiet
and warning signals to the attacker. The warning signal (lights on
aboard the UAV) is used to warn the attacker off. We would like a
model in which the adversary would stop the attack and run away
upon seeing a warning signal.

2.1 Types of Uncertainty
Uncertainty is a crucial factor in automated applications of mobile
sensors, yet has not been considered in previous work [11]. We
consider two prominent types of uncertainties, motivated directly
by the application of conservation drones. The first is detection
uncertainty, i.e., the sensor could fail to detect a real attacker (false
negative), or it could incorrectly classify something as an attacker
(false positive) due to the inaccuracy of image recognition tech-
niques [2, 6, 10]. We only consider false negatives in this work
because the patrollers often have access to sensor videos, and the
problem of false positives can be partly resolved by having a human
in the loop. In contrast, verifying false negatives is harder due to
various potential reasons, e.g., the poacher is simply hard to see as
in Fig. 1. Also, deep learning algorithms can be tuned so there are
more false negatives or positives depending on need.

The second type of uncertainty we consider is observational un-
certainty, i.e., the attacker’s imperfect detection of the sensors and
the signals. When the attacker chooses one target to attack, he
observes one of four possible signaling states at the target: (1) a
patroller; (2) nothing; (3) a quiet signal (e.g., UAV only with no
lights); (4) a warning signal. The existence of observational uncer-
tainty means the true signaling state of the target may differ from
the attacker’s observation. Therefore, the attacker could observe
nothing even when there is a warning signal.

(a)

(b) (c)

(d) (e)

Clear
Clear

Clear

Clear
Alert

Clear

Figure 2: The reaction stage. (a) shows an initial allocation.
In (b), no attacker is detected, so the patroller moves to the
matched target (c). In (d), an attacker is detected, so the pa-
troller responds (e).

2.2 Multistage Game Model
To facilitate incorporating uncertainty, we start with a novel three-
stage game model: (1) allocation stage where (i) the defender places
security resources (defender allocation stage), and (ii) the attacker
chooses a target to attack based on the defender mixed strategy
(attacker allocation stage); (2) signaling stage where the mobile sen-
sors send signals based on detection (defender signaling stage); (3)
reaction stage where (i) defender reacts to the sensor detection and
relocates a human patroller to a nearby target (defender reaction
stage), and (ii) the attacker chooses to deploy the attack or run
away after the observation (attacker reaction stage). In practice, the
defender signaling and reaction stages can happen simultaneously.
In stage (3), the human defender moves from the original assigned
location to a new location. If the attacker is detected by a sensor,
nearby patroller(s) react by moving to the attacker’s location to
interdict. Unlike [11], if no sensors or patrollers detect the attacker,
the defender still reacts by moving to another target (e.g., Fig. 2).

2.3 Using the Game Model
Uncertainty affects many aspects of the game model, such as the
utilities, attacker behavior, and signaling and reaction strategy.
Regarding attacker behavior, for instance, an attacker may stop
attacking even when he observes a quiet signal because he is afraid
of failing to observe a real warning signal. These different behaviors
are not expected in the model thus far, so will need to be incor-
porated. In addition, we will need to modify the reaction stage to
allow the patrollers to relocate to locations where sensors are placed
rather than just empty locations. This provides an opportunity to
check targets covered by drones but with false negative detection.
In previous work [4, 11], if the sensor does not detect an attacker,
the patroller does not do anything. However, due to the detection
uncertainty, the defender has the incentive to relocate the human
patrollers to nearby locations even if no detection is made.
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