
Regular Decision Processes: Modelling Dynamic Systems
without Using Hidden Variables∗

Extended Abstract

Ronen I. Brafman
Ben-Gurion University

Beer-Sheva, Israel
brafman@cs.bgu.ac.il

Giuseppe De Giacomo
Sapienza Università di Roma

Rome, Italy
degiacomo@dis.uniroma1.it

ABSTRACT
We describe Regular Decision Processes (RDPs) a model in between
MDPs and POMDPs. Like in POMDPs, the effect of an action may
depend on the entire history of actions and observations, but this
dependence is restricted to regular functions only. This makes RDP
a tractable, yet rich model, that does not hypothesize hidden state,
and could possibly be useful for learning dynamic systems.
ACM Reference Format:
Ronen I. Brafman and Giuseppe De Giacomo. 2019. Regular Decision Pro-
cesses: Modelling Dynamic Systems without Using Hidden Variables. In
Proc. of the 18th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
MDPs are a well known model of decision making in stochastic
environments. POMDPs extend them to partially observable en-
vironments. An optimal policy for an MDP can be computed in
polynomial time, and there are good algorithms for PAC learn-
ing a near-optimal policy in an MDP [3, 7]. Solving a POMDP is
much harder. Depending on the precise assumptions, its complexity
ranges from PSPACE-hard to undecidable [8–10]. Learning them is
also much harder: few algorithms exist that provide some gurantees
(e.g., [14]) but they are not too useful w.r.t. sample complexity.

This paper introduces Regular Decision Processes, or RDPs, an
intermediate model between MDPs and POMDPs. Various ideas
behind RDPs, such as MDPs with temporally extended rewards [1,
2, 13], and k-order MDPs have been discussed in the literature,
as well as models such as Predictive State Representations (PSRs),
that also attempt to do away with latent variables [11]. However,
we believe this paper is the first to formally define a model that
embodies these intuitions, grounding it in advances in the area of
temporal logic [5].

RDPs generalize k-order MDPs, and can capture some POMDPs
models, but rely on observable variables only. In k-order MDPs, the
future depends on the last k states. In POMDPs, the future depends
on the entire history of observations. In RDPs, the future depends,
also on the entire history of observations, but this dependence is
∗This work was supported by Israel Ministry of Science and Technology Grant 54178,
the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive
Robotics Center of Ben-Gurion University, the Lynn and William Frankel Center, and
Sapienza project "Immersive Cognitive Environments"

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

restricted – the past determines the future only through regular
functions of the sequence of past observations. This means that
that this dependence can be described declaratively and succinctly
using regular expressions, or more precisely, through formulas
in dynamic logic over finite traces – ldlf [5] that have the same
expressive power, but nicer properties. Thus, like PSRs [11], RDPs
make no reference to hidden state. This makes them a promising
target model for studying learning in non-Markovian environments
and in partially observable environments.

In this extended abstract, we provide a few central results on
RDPs, their complexity, and how they can be solved, and briefly
discuss the potential for learning them,

2 RDPS
A (factored) RDP ML = ⟨P,A, S, trL , rL , s0⟩ consists of a set of
propositionsP, defining a set of states S , which are all possible truth
assignments over P, a set of actions A, and an initial state s0. Its
transition and reward functions are specified as follows: trL is rep-
resented by a finite setT of quadruples of the form: (φ,a, P ′,π (P ′)),
whereφ is an ldlf formula overP,a ∈ A, P ′ ⊆ P is the set of propo-
sitions affected by a when φ holds, and π (P ′) is a joint-distribution
over P ′ describing its post-action distribution. The basic assumption
is that the value of variables not in P ′ is not impacted by a.

If {(φi ,a, P ′i ,πi (P
′)|i ∈ Ia } are all quadruples for a, then the φi ’s

must be mutually exclusive, i.e., φi ∧ φ j is inconsistent, for i , j.
But they need not be exhaustive, so that no a transition may be
possible given some traces.

trL((s0, ..., sk),a, s
′) is now defined as follows:

(1) trL((s0, ..., sk),a, s
′) = π (s ′ |P ′) if ∃ (φ,a, P ′,π (P ′)) ∈ T such

that s0, ..., sk |= φ, and sk and s ′ agree on all variables in
P \ P ′.

(2) trL((s0, ..., sk),a, s
′) = 0 otherwise.

That is, given current trace s0, ..., sk and action a, if no quadruple
has a condition φ satisfied by s0, ..., sk , then no transition is possible
on a. Otherwise, let (φ,a, P ′,π (P ′)) be such a quadruple. By our
assumptions, it is the only one. The next state s ′ must assign exactly
the same value to propositions not in P ′ as in sk – i.e., they are not
impacted by the action. Its probability is equal to the probability
that π assigns to the value of the P ′ propositions in s ′.

The reward function rL is specified using a finite set R of pairs
of the form (φ, r), where φ is an ldlf formula over P, and r ∈ R is
a real-valued reward. Given a trace s0, . . . , sk , the agent receives
the reward: rL(s0, . . . , sk) =

∑
(φ,r)∈R∧s0, ...,sk |=φ r . As before, by

definition rL is bounded above and below.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1844

Consider the following ldlf formulas and their use to model
trL and rL φ1 = ⟨true∗;Rain; true∗⟩end – it rained in the past.
φ2 = ⟨true∗;Rain;Rain;Rain⟩end – it rained in the last 3 time
steps (e.g., days).1 φ3 = ⟨true∗;Rain; (¬(Tmp>5))∗⟩end – it rained
in the past, and the temperature was not above 5oC since. φ4 =
⟨true∗;Rain;Tmp<0; (¬(Tmp>2))∗⟩end – it rained in the past, then
the temperature was below 0, and since, it was not above 2oC. Now,
if when driving fromA to B after it has rained, followed by sub-zero
temperature and very low temperature since, there is a 0.1 probabil-
ity of reaching B with some damage, and 0.1 probability of not reach-
ing B at all (with some damage). LetA,B,d denote at_A,at_B, dam-
aged. We can write: (φ4 ∧ ⟨true∗; (A∧¬d)⟩end,drive, {A,B,d}),π),
where π (¬A∧B∧d) = 0.1,π (¬A∧¬B∧d) = 0.1,π (¬A∧B∧¬d) =
0.8. Now, suppose that if it has only rained and the temperature
was not high since, then these probabilities drop to 0.01. We can
write: (φ3 ∧¬φ4 ∧ ⟨true∗; (A∧¬d)⟩end,drive, {A,B,d}),π), where
π (¬A∧B∧d) = 0.01,π (¬A∧¬B∧d) = 0.01,π (¬A∧B∧¬d) = 0.98.
To reward the robot for delivering coffee to Ann only if she re-
quested it earlier, we can use ldlf to capture the regular expression:
(⟨true∗;RqstAnn; (¬DlvdAnn)∗;DlvdAnn⟩end, 10).

3 SOLVING RDPS
RDPs provide a natural way of using the rich, yet intuitive, language
of regular expressions to specify a decision process in which transi-
tions and rewards can depend on an unbounded history, unlike, for
example, k-order MDPs. They are solved by transforming them into
MDPs, but unlike the belief-space transformation of POMDPs, this
transformation yields a finite MDP. The transformation process can
be aided by automated tools for constructing a DFA from an ltlf
/ldlf formula such as https://flloat.herokuapp.com [6], saving the
modeller the effort and potential errors associated with attempting
to transform them manually into MDPs.

Given RDP ML = ⟨P,A, S, trL , rL , s0⟩, construct an equivalent
MDPM as follows. Let T be the set of quadruples (φ,a, P ′,π (P ′))
defining trL . Let R be the set of pairs (φ, r) defining rL . Enumerate
quadruples in T : (φ1,a1, P ′1,π (P

′
1)), . . . , (φm ,am , P

′
m ,π (P

′
m)), and

the pairs in R as (φm+1, rm+1), . . . , (φn , rn). For each formula φi ,
build the corresponding dfaAi = ⟨2P ,Qi ,δi , Fi , ,qi,0⟩ that accepts
exactly those traces that satisfy φi . 2P , the set of all truth assign-
ments to the propositions in P, isAi ’s alphabet,Qi is its state space,
qi,0 is the initial state, δi is its transition function, and Fi is the set
of accepting/goal states. For details of this well known construction
see [2, 5]. The complexity of generating a deterministic automaton
for φi is 2EXPTIME, and its size is doubly exponential in the worst
case. It has been observed that, in practice, this transformation
often does not involve exponential blow up and yields compact
automata [12]. We define the MDPM = ⟨P ′,Q, tr , r ,q0⟩ where

• Q = S ×Q1 × · · · ×Qn
• P ′ extends P with propositions that capture the states of
A1, . . . ,An . (The finite state of Ai can be encoded using
loд(|Qi |) propositions.)

• tr ((s,q1, . . . ,qm),a, (s ′,q′1, . . . ,q
′
m)) = trL(s̄,a, s

′) if (1) there
exists a (unique by assumption) 1 ≤ i ≤ m such that qi ∈ Fi ,
(2) s̄ is some trace that satisfiesφi , and (3) for every 1 ≤ j ≤ m

1Note that, ⟨true∗; ϱ ⟩end means that sequence ϱ holds at the end.

we have q′i = δi (qi , s
′).

Otherwise, tr ((s,q1, . . . ,qn),a, (s ′,q′1, . . . ,q
′
n)) = 0.

• r ((s,q1, . . . ,qn),a) =
∑

{i ∈{m+1...,n } |qi ∈Fi } ri
• q0 = (s0,q1,0, . . . ,qn,0)

In words: the MDP state reflects the states of the RDP and all
automata tracking the satisfaction of φ1, . . . ,φn . The initial state
is the RDP’s initial state combined with the initial states of all
automata. The transition function updates the RDP state compo-
nent identically to trL , and deterministically updates the state of
each automaton using its transition function. Our requirement on
the quadruples ensures that for every action, there is exactly one
formula that is satisfied (or, for inapplicable actions, no formula).
Finally, the reward is the sum of the rewards associated with for-
mulas satisfied by the current trace, which correspond exactly to
all automata entering an accepting state.

We can show that the original RDP and the MDP generated using
the method above have isomorphic computation trees (and hence
sets of traces). That is, a given sequence of actionswill yield identical
distributions over sequences of states, and each such sequence of
states will result in the same reward.

Complexity-wise, an optimal RDP policy can be computed in
2EXPTIME,while finding a policywith value ≥ c is 2EXPTIME-hard.
Membership comes from the construction above: the generation of
the automata from the formulas is in 2EXPTIME (but their factored
encoding is only exponential) while computing a policy for an MDP
is polynomial in |S | |A|. Hardness comes from Planning for ldlf
(actually its fragment ltlf) goals in fair FOND, see [4] which is a
special case of stochastic planning, and a goal can be captured by a
reward + transition to a sink state.

Furthermore, it is not difficult to show that every RDP has a
regular policy that is optimal. A policy ρ is regular if it has the form
{(φi ,ai)} where φi is an ldlf formula and ai an action, such that
for every trace s0, . . . , sk reachable given ρ, either no transition
is possible after s0, . . . , sk , or there exists exactly one (φi ,ai) ∈ ρ
such that s0, . . . , sk |= φi .

4 RDPS AND POMDPS
We conclude by discussing the relationship between RDPs and
POMDPs. Every RDP can be transformed into a POMDP with the
same set of observable variables in which the hidden variables are
a regular function of the observable variables. This is related to the
transformation above, and in it, each hidden variable is essentially
capturing the state of one of the automata. (This of course, can be
encoded using boolean variables). By definition of the DFA, its state
is a regular function of the history of observations.

The converse requires a little more effort to prove, but is also true.
That is, if we have a factored POMDP with propositions defining its
state, such that the value of each proposition is a regular function of
the current history of observations, then there exists an equivalent
RDP. Here equivalence implies again, that the computation trees
are isomorphic, where each branch refers only to the observable
aspects of the trace.

And what about general POMDPS? We can show that every
infinite horizon POMDP can be approximated by an RDP, such that
the optimal policy for the RDP, when applied to the POMDP, will
yield an approximately optimal behavior for the latter.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1845

https://flloat.herokuapp.com

REFERENCES
[1] Fahiem Bacchus, Craig Boutilier, and Adam J. Grove. 1996. Rewarding Behaviors.

In AAAI.
[2] Ronen Brafman, Giuseppe De Giacomo, and Fabio Patrizi. 2018. LTLf/LDLf

Non-Markovian Rewards. In AAAI.
[3] R. Brafman and M. Tennenholtz. 2002. R-max – A general polynomial time

algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research 3 (2002), 213–231.

[4] Giuseppe De Giacomo and Sasha Rubin. 2018. Automata-Theoretic Foundations
of FOND Planning for LTLf and LDLf Goals. In IJCAI.

[5] Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and
Linear Dynamic Logic on Finite Traces. In IJCAI.

[6] Marco Favorito. 2018. Reinforcement Learning for LTLf/LDLf Goals: Theory and
Implementation. Master’s thesis. DIAG, Sapienza Univ. Rome.

[7] Michael J. Kearns and Satinder P. Singh. 2002. Near-Optimal Reinforcement
Learning in Polynomial Time. Machine Learning 49, 2-3 (2002), 209–232.

[8] M. L. Littman, J. Goldsmith, and M. Mundhenk. 1998. The computational com-
plexity of probabilistic planning. Journal of AI Research 9 (1998), 1–36.

[9] Omid Madani, Steve Hanks, and Anne Condon. 2003. On the undecidability of
probabilistic planning and related stochastic optimization problems. Artif. Intell.
147, 1-2 (2003), 5–34.

[10] C. Papadimitriou and J. N. Tsitsiklis. 1987. The complexity of Markov decision
processes. Math. Oper. Res. 12, 3 (1987), 441–450.

[11] S. Singh, M. L. Littman, and R. S. Sutton. 2001. Predictive Representations of
State. In Proceedings of the 15th International Conference on Neural Information
Processing Systems. MIT Press, 1555–1561.

[12] Deian Tabakov and Moshe Y. Vardi. 2005. Experimental Evaluation of Classical
Automata Constructions. In LPAR.

[13] Sylvie Thiébaux, Charles Gretton, John K. Slaney, David Price, and Froduald
Kabanza. 2006. Decision-Theoretic Planning with non-Markovian Rewards. J.
Artif. Intell. Res. (JAIR) 25 (2006), 17–74.

[14] Zongzhang Zhang, Michael L. Littman, and Xiaoping Chen. 2012. Covering Num-
ber as a Complexity Measure for POMDP Planning and Learning. In Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. http://www.aaai.org/ocs/index.php/AAAI/AAAI12/
paper/view/4906

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1846

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4906
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4906

	Abstract
	1 Introduction
	2 RDPs
	3 Solving RDPs
	4 RDPs and POMDPs
	References

