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ABSTRACT
This paper introduces a new Negotiating Agent for automated

negotiation on continuous domains and without considering a

specified deadline. The agent bidding strategy relies on Monte

Carlo Tree Search, which is a trendy method since it has been used

with success on games with high branching factor such as Go. It

uses two opponent modeling techniques for its bidding strategy

and its utility: Gaussian process regression and Bayesian learning.

Evaluation is done by confronting the existing agents that are able

to negotiate in such context: Random Walker, Tit-for-tat and Nice

Tit-for-Tat. None of those agents succeeds in beating our agent;

moreover the modular and adaptive nature of our approach is a

huge advantage when it comes to optimize it in specific applicative

contexts.
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1 INTRODUCTION
Negotiation is a form of interaction in which a group of agents

with conflicting interests and a desire to cooperate try to reach a

mutually acceptable agreement on an object of negotiation [2]. The

agents explore solutions according to a predetermined protocol

in order to find an acceptable agreement. Being widely used in

economic domains and with the rise of e-commerce applications,

the question of automating negotiation has gained a lot of interest

in the field of artificial intelligence and multi-agent systems.

Many negotiation frameworks have been proposed [12] and

encompass different aspects: the set of participants, the agent pref-

erences and the number of issues. One of the major issues in au-

tomated negotiation is considering the time pressure to be well

defined over the negotiation, and materialized through a deadline.

However, some potential applications of automated negotiation,

typically in industrial context, may require an varying time pres-

sure. Factoring is a good example: when a company sells goods or

services to another company, it produces an invoice which may be

paid after several weeks. This delay of payment may have a nega-

tive impact on the company activity, as it may not have sufficient
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liquidity to fulfill other contracts. Factoring is an interesting answer

to this issue. A funding company – called a factor – accepts to fund

the invoices of the supplier, by paying them immediately less than

their nominal amount and assuming the delay of payment of the

principal. From the factor perspective, it can be seen as a short

term investment. This setting may include issues of various kinds:

continuous (discount rate), numeric (nominal amount of invoices),

and categorical (prinicpal).In this application, time pressure is not

constant over the negotiation. For the factor, the time pressure

depends both on the money it has to invest and on the investment

opportunities. For the supplier, the negotiation may be suddenly

interrupted at some point if the payment of an invoice makes it

useless for the supplier.

In this paper, we introduce a loosely constrained adaptive strat-

egy for automated negotiation that can negotiate with nonlinear

preferences, over discrete and continuous issues and without prede-

fined time pressure. We represent bargaining as an extensive game

with each proposal considered as a move in the game [17, 19]. We

state that our opponent is adaptive, which implies that negotiation

history is important. We therefore propose to combine Monte Carlo

Tree Search (MCTS) and opponent modeling. MCTS has proved to

be a very adaptable game heuristics, in General Game Playing [9].

It has also proved efficient for large branching factor games [5, 20].

2 RELATEDWORKS
In this section, we introduce the domains related to our agent:

automated negotiation and Monte Carlo methods applied to games.

Automated negotiation. To review automated negotiation strate-

gies, we rely on the “BOA” (Bidding strategy, Opponent modeling,

Acceptance strategy) paradigm [1]:

Bidding strategies may depend on the history, i.e. the concessions
made by the opponent, a negotiation deadline, the utility function

of the agent, and the opponent model. In particular, Tit-for-tat [8]

only relies on the opponent proposals. Nice Tit-For-Tat agent [4]

uses learning techniques in order to improve it. The other methods

rely on time pressure and cannot be applied in our context.

Acceptance strategies can be divided into two main categories

[3]. The first category is called “myopic strategies” as they only

consider the last bid of the opponent, the agent’s own last proposal

or its bidding strategy. The second category consists of “optimal

strategies” [3] and rely on the deadline.

Most of the opponent modeling techniques related to automated

negotiation have been reviewed by [2]. In our context, they can

be used to model: the opponent bidding strategy, its utility and

the acceptance strategy. There are two main methods to model

adaptive bidding strategies which do not rely on the deadline:

neural networks and time series-based techniques. Among time

series techniques, the Gaussian process regression is a stochastic
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technique which has been used with success by [21]. The opponent

utility is generally modeled through either frequency based tech-

niques or Bayesian learning. Frequency methods are relevant in

the cases where the negotiation domain only consists of discrete

issues. Bayesian Learning [14] is well suited for the continuous case

and can easily be extended to categorical domains. The opponent

acceptance strategy can be learned in two ways, either by assum-

ing that the opponent has a myopic strategy or by using neural

networks [7]. The latter is computationally expensive though.

Monte Carlo Tree Search. Monte Carlo methods are often used

as heuristics for games. Kocsis and Szepevsvári [15] propose a

method to combine the construction of a game tree with Monte

Carlo techniques. This method is called Monte Carlo Tree Search

(MCTS). It consists of 4 steps: selection explores the already built

part of the tree, expansion generates a new node, simulation
plays a game until a final state is reached and the utility of the

agents is computed and backpropagation propagated it over all

the selected nodes.

3 OUR MCTS-BASED AGENT
Our agent follows the BOA paradigm. It consists of a bidding strat-

egy that implements MCTS and an opponent modeling module

divided into two submodules: one for the opponent utility, the

other for its bidding strategy. The last module is the acceptance

strategy, it accepts the opponent proposal if it is better than the bid

generated by the bidding strategy.

Opponent modeling. To model the opponent bidding strategy, we

use Gaussian Process Regression [18, 21]. One of the capital aspects

of this method is the choice of its kernel. In order to choose the best

one, we compared them using an automated negotiation setting

similar to the one of our experiments. The table 1 shows the results

of GPR for each of the most common ones over 50 negotiation

sessions. This method can also be used on the categorical issues as

explained in chapter 3 of [18].

Kernel RBF RQF Matérn ESS

avg. dist. 43.288 17.766 43.228 22.292

Table 1: Avg dist. between proposals and GPR predictions

Bayesian learning [14] considers that an agent makes conces-

sions at roughly constant rate. It relies on triangular functions.

It first generates a predetermined number of hypotheses on the

utility functions and the estimate of their probability based on re-

ceived proposals. The estimated utility of the opponent is the sum

of these hypotheses weighted by their probability. This method can

be naturally extended to the categorical issues by using traditional

Bayesian inference.

A simulated agent accepts the proposal from its opponent if its

utility is better than the utility generated by its bidding strategy.

MCTS-based bidding strategy. As explained in introduction, ne-

gotiation can be considered as a 2 players extensive game [17, 19].

However, we must adapt the heuristics traditionally used for games

to its peculiarities: Selection is based on progressive widening [6]:
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for-tat
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(c) Nice Tit-for-tat vs
RandomWalker

Our agent Random Walker Tit-for-tat Nice Tit-for-tat

Figure 1: Average utility of negotiating agents

a new node is expanded if nαp ≥ nc , with np the number of simula-

tions of the parent, nc its number of children and α a parameter of

the model. If there is no expansion, the selected node i maximizes

Wi =
si

ni+1 + C × nα
√

ln(n)
ni+1 with n the number of simulations of

the tree, si the score of the node i and C a parameter of the model.

Expansion is chosen randomly among possible bids. Simulation
is made according to the opponent models. Backpropagation is

made both on the agent score and the opponent modeled score.

We use the agent knowledge on the game to prune the less

promising branches of the tree: i.e. all the branches of the tree

with lower utility than the best proposal of the opponent (from our

agent’s point of view).

4 RESULTS
Our agent is evaluated using the Genius [16] framework against

Tit-for-tat [8], Nice Tit-for-Tat and RandomWalker [4] in the ANAC

2014 setting [10] except that there is no deadline. Figure 1 displays

the utility of the agents when negotiating with each other. The

utility of the agents is displayed as an histogram. The results are

averaged over 20 negotiation sessions with each profile, with error

bars representing the standard deviation from the average.

Our agent is able to beat the Random Walker in every situation

and get a significantly better result whatever the profile. Our agent

gets a lower utility with Tit-for-Tat but is still able to beat it sig-

nificantly. The negotiations with Nice Tit-for-Tat never end: the

agents keep negotiating forever. We propose instead an indirect

evaluation by confronting Nice Tit-for-Tat with Random Walker,

in the same setting. The performances of both agents are equal,

considering the standard deviation of the series.

5 CONCLUSION
In this paper, we presented a negotiating agent able to negotiate in

a context where agents do not have predetermined deadline, with

both continuous and categorical issues. The experimental results

are promising: against all the agents that can negotiate in this

domain, our agent outperformed Random Walker and Tit-for-Tat

and draws with Nice Tit-for-Tat. Among the perspectives of this

work, we propose to adapt it to the multilateral context and try

improvements as AMAF and RAVE [11, 13]
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