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ABSTRACT
The ability for individuals and groups to trade off between deci-
sion time and decision accuracy when making decisions is com-
monly found in nature and essential for flexible decision-making
responses. There has been little literature that models this ability
in autonomous swarms, in which a large number of agents must
come to a group consensus without a centralized controller. This
paper successfully produces the first urgency-dependent model
for discrete site selection by an autonomous swarm. It builds off
of quorum sensing techniques found in natural swarms of ants
and cockroaches as well as existing discrete site selection models
for swarms to improve on previous work by adding the capability
for agents to make a time-accuracy trade-off in decision making.
The developed model will allow for future autonomous swarms to
dynamically and effectively respond to a range of threats such as
inclement weather and military attack.
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1 OVERVIEW
This paper proposes an urgency-sensitive N-site selection design
model for autonomous swarms. The model enables a swarm of
autonomous agents to explore a search space for new sites, commu-
nicate with each other to determine the best option, and migrate to
the new site after reaching a group consensus. We take inspiration
from natural swarms as well as Reina et al.’s [12] and Cody and
Adams’ [3] N-site selection models. The model was tested in simula-
tion on two, three, and four site selection in a 4.5 by 4.5 m arena and
a time accuracy trade-off was successfully created with a maximum
accuracy of 99.98% and a minimum decision time of 4.4 minutes.
Split decisions also occurred with more urgent simulations due to
a lack of communication at higher urgencies. The model frame-
work presented in this paper could be applied to a range of discrete
decision making problems that require a variation in exercising
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caution. The proposed model will conserve the resources required
to build agents that need to complete dangerous tasks efficiently
and effectively.

2 DYNAMIC QUORUM ALGORITHM
The swarm starts out in a site hereafter deemed the "nest" and
must select the site with highest value among N sites, each with a
location Li ∈ R

2, area Ai ∈ R [19], value vi and distance di from
their centroid to that of the nest. The situation has urgency u. The
agents’ decision time should decrease as urgency increases and their
decision accuracy should increase as urgency decreases. Agents
interact locally with a sensing radius of RS and a communication
radius of RC .

In the proposed model, u ∈ [0, 10], u ∈ R. Situation urgency is
determined by the urgency function:

u = U (Su ) (1)

Su is a set of situation-specific parameters that affect the urgency
of the situation. An example parameter is the presence of immediate
risks such as mortar fire in military situations.

Each of six possible agent states is comprised of a preference
category (Uncommitted (U ), Favoring (F ), or Quorum (Q)) and a
location category (Active (A) or Nest (N )). Uncommitted agents do
not have a site preference, Favoring agents prefer a site but may
change their preferences, and Quorum agents have definitively
decided on a site. Active agents stay outside of the nest, either
exploring the arena or in a site, while Nest agents stay inside of the
nest.

All agents begin in an uncommitted state in the nest. Uncom-
mitted Nest (U N ) agents remain in the nest and do not participate
in decision-making. Uncommitted Active (UA) agents leave the
nest and explore the arena for sites. The initial probability for an
uncommitted agent to leave the nest and become Uncommitted Ac-
tive is x = u

10 .U
A agents transition toU N every unit of time with

probability PN , and U N agents transition to UA with probability
PA, where PN and PA are governed by the following equations:

x =
u

10
(2)

ρ(u) =
x

1 − x
(3)

PN =

{
L PA < 1
0 PA = 1

(4)
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Figure 1: The Dynamic Quorum behavior model transitions
for uncommitted and favoring states. Quorum states are
omitted for clarity.

PA =


ρ(u)L ρ(u)L ≤ 1
1 ρ(u)L > 1
1 x = 1

(5)

As recommendedwith uncommitted states in Reina et al.,UA agents
transition toU N every unit of time with probability PN = L, where
L is the inverse of the average site round trip [12]. In order to
account for the urgency-dependent PA transition, where at high
urgency PA may be equal to 1, PN is also set to zero when this is
the case. This enables UA agents to have enough time to arrive at
potential sites before returning to the nest. PA is urgency dependent
and set such that every 1 increase in urgency corresponds in a
10% increase of UA agents. ρ(u) determines the necessary factor
to multiply L by such that the fraction of UA agents out of all
uncommitted agents is x .

UA agents who detect a site within sensing range take time to
examine the site and then decide to favor it with probability CSi PF
where:

PFi =
1
2
(x +vi ± ε) (6)

vi = V (Sv ) (7)
PF equally weights the situation urgency as well as the agent’s per-
ceived site value with some sensing error. Site valuevi = [0, 1], vi ∈
R is determined by V , the site value function, which takes in a set
of situation-specific environment parameters Sv such as site area or
potential dangers in a site. CSi is 1 if site i is within sensing range
and 0 otherwise. After choosing to favor a site, agents then have an
initial probability of being FN with probability x and FA otherwise.
FN agents communicate with each other in order to select the best
site. The transitions between FN and FA are equal to those between
U N andUA. Therefore with higher urgencies, a larger proportion
of Favoring agents stay in their favored site. This behavior allows
for favoring agents to build up a quorum in their site more quickly,
allowing for quicker decisions with higher urgency values. This
necessarily leaves less FN agents in deliberation over site quality,
which will result in a less accurate decision. At low urgencies, many
agents participate in the deliberation process, resulting in a buildup
of agents visiting the site of highest value. Favoring nest agents

change each others’ behavior through an inhibition process. When
a FN agent hears of a site valued higher than its own it visits the
new site, explores it, and evaluates it. If the agent’s evaluation con-
firms that the new site is of higher value, it switches to favoring
the new site. As in Cody and Adams’ and Reina et al.’s behavior
model the probability for an agent to message another every sec-
ond is L to promote sufficient population mixing so that excessive
communication does not occur. The probability of the inhibition of
an agent favoring site i by one favoring site j isCFNj Ci j whereCFNj
is L*sj , sj is the number of agents favoring site j within sensing
range, and Ci j is 1 when the agent’s evaluation of site j returns a
higher site value than its perceived value of site i .

Favoring agents can also abandon a site with probability α(Sα )
where α is an abandonment function that takes in a set of situation-
specific parameters Sα that indicate a particular site is no longer
favorable. An example parameter is the time since another agent
was encountered in the site.
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Figure 2: Transitions from Uncommitted and Favoring
States to the Quorum decision states.

Active Uncommitted or Favoring agents detect a quorum while
in a site with probability (CQi + CQ (SQ )). CQi is 1 when another
quorum agent has been detected and 0 otherwise.CQ (SQ ) is 1 when
the quorum function Q(SQ ) is satisfied but no quorum agents have
been detected and 0 otherwise. Here SQ is a set of situation pa-
rameters that should be relevant to a local measure of population
density. Typical factors that SQ would contain are the encounter
rate of other agents within a certain amount of time or the number
of neighbors within sensing range. Nest agents can also detect a
quorum if a quorum agent is within sensing range.

After a quorum is detected all agents transition to QA with
probability x and are QN otherwise. Once an agent transitions
to a Quorum state it exhibits a random recruitment behavior to
notify others of the quorum (for example, a Lévy flight) for a chosen
amount of time tQ before transitioning to the quorum site.
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