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ABSTRACT
In multi-robot reinforcement learning the goal is to enable a group
of robots to learn coordinated behaviors from direct interaction
with the environment. Here, we provide a comparison of two main
approaches designed for tackling this challenge; namely, indepen-
dent learners (IL) and joint-action learners (JAL). We evaluate these
methods in a multi-robot cooperative and adversarial soccer sce-
nario, called 2 versus 2 free-kick task, with simulated NAO hu-
manoid robots as players. Our findings show that both approaches
can achieve satisfying solutions, with JAL outperforming IL.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) is concerned with the
application of reinforcement learning (RL) techniques to situations
having multiple agents learning at the same time in the same envi-
ronment. MARL has the potential to handle challenging domains
involving robot teams or swarms [1–3, 6, 7, 9, 10, 14].

Two main MARL approaches have been proposed for handling
multi-agent domains. In independent learners (IL), every agent
performs standard RL, but in the presence of other agents. IL has
the drawback that each individual sees the environment as non-
stationary; and hence, guarantees of single-agent RL do not longer
hold. Meanwhile, in joint-action learners (JAL), the state and action
spaces of all agents are merged together, defining a sort of super
agent in the joint-space. Any single-agent RL algorithm can readily
learn the optimal joint-policy for such super agent. JAL overcomes
the non-stationarity problem, but it presents scalability issues.
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Here, we implement IL and JAL and compare them on a robotic
task. We consider a simplified version of soccer, referred to as 2
versus 2 offensive free-kick task. In soccer domains, the number of
agents is normally small; hence, JAL is likely to converge within
a reasonable amount of time, unlike domains with hundreds or
more agents where JAL is impractical. In such domains, JAL may
still be slower than IL, but it may also find better policies. Thus,
they provide a motivating opportunity for investigating a tradeoff
between optimality and convergence rate across MARL approaches.

As contributions: 1) we provide new satisfactory results from IL
and JAL, whereas a previous work [4] did not learn coordinated
behaviors with neither approach in a similar task (2 versus 1 half-
field offense), 2) we compare the performances of IL and JAL given
these results, confirming that JAL should not be overlooked when
facing analogous domains, and 3) we carry out experiments on a
physically realistic 3D simulator, whereas, as far as we know, all
previous studies concerning MARL in soccer domains involved
simplified 2D environments.

2 METHODOLOGY
Task Specification. Experimentswere carried outwithin a RoboCup

Standard Platform League [11] simulator, called the B-Human frame-
work [12], which allows teams of realistically simulated NAO hu-
manoid robots to compete against each other.

The offensive free-kick task involves two teams; an offensive
(2 attackers) and a defending (defender and keeper) team. The
game takes place in the half-field belonging to the latter team. An
episode starts with the offensive team being granted a free kick.
The attackers’ goal is to score a goal within a time limit without
losing control of the ball. Only the attackers are allowed to learn a
strategy, whilst the defending players follow handcrafted policies.

Markov Decision Process (MDP) for IL. As all agents have homo-
geneous state and action spaces, we formulate one MDP [5] and
learn a shared policy from their combined experiences. This MDP
comprises an 18-dimensional state vector consisting of an agent’s
and its teammate’s poses, the ball’s position and velocity, the de-
fender’s position, the keeper’s y-coordinate and a 5-bit timestamp.
Such high-level information is supplied by the simulator.

The action space of the MDP is represented by a 5-dimensional
real-valued vector. Two components correspond to action selectors
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Figure 1: Mean and standard deviation over 10 runs of the total reward per episode reported by a) IL (left) and b) JAL (right).

for the only twomacro actions a learning agent can execute, namely:
walk and kick, which come pre-built with the simulator. The three
remaining components specify walking velocities. Both agents are
independently rewarded given the same function shown below:

R = DB
A +max (DT

B ,D
G
B ) +G (1)

Where, DB
A computes the difference between the distances from

an agent A’s previous and current positions to the ball B’s current
position, DT

B computes the difference between the distances from
B’s previous and current positions to T’s current position (A’s team-
mate), DG

B computes the difference between the shortest distances
from B’s previous and current positions to the goal line, and G
assigns +20 to all learners only when a goal is scored. DT

B and DG
B

return zero if A is not responsible for the ball’s motion.

Stochastic Game (SG) for JAL. Since full observability is assumed
in both formulations, the state space of the SG [13] associated
with the free-kick task is also 18-dimensional, embedding the same
components as the previous MDP. The joint-action space (10D) is
constructed by concatenating each agent’s individual 5-dimensional
action vector, as presented in the precedent sub-section.

The offensive team as a whole is rewarded according to the
following function, whose terms mirror those in Equation 1; and
where, subscript Ai refers to the i-th agent in the offensive team.

R =
∑

i
DB
Ai +max ({DAi

B ,∀i},D
G
B ) +G (2)

Deep RL Settings. The DDPG algorithm [8] is used in IL as well
as in JAL. Critics receive as input the concatenation of state and
action vectors of the corresponding MDP or SG, while actors are
fed only state vectors. Sequential neural networks with 3 hidden
layers are employed in all cases. Training relies on the L2-loss and
Adam optimizer. Hyper-parameters are set as shown in Table 1.

3 RESULTS
IL and JAL were executed 10 runs each over the offensive free-kick
task. Each run continued for a maximum of 400K iterations. Policies
were validated on 50 new episodes after every 200 iterations.

IL achieved successful team strategies in two out of ten runs. In
the remaining runs, IL scored zero goals at every validation step.
Figure 1(a) shows that initially IL gets stuck in a bad local minimum,
but it eventually manages to converge to a satisfactory policy after
200K iterations on average. Moreover, in policies found by IL, the

Table 1: DDPG hyper-parameter setting.

Parameter Approach Value

Hidden units/layer critic/actor both 64,48,32 (RELU)
Output units in critic both 1 (RELU)
Output units in actor IL 5 (logistic)
Output units in actor JAL 10 (logistic)
Size of replay buffer both 100000
Training batch size both 4000

ϵ-greedy control parameter both 0.5
Discount rate both 0.9

Learning rate critic/actor both 0.001
Update rate target networks both 0.01

attacker that receives the ball displays a reactive behavior, i.e. it
does not know where to go until its teammate makes a pass; as a
result, it spends extra time readjusting and searching for the ball.

JAL accomplished a perfect goal percentage in validation in six
out ten runs. Another two ended with percentages of 0.52 and 0.78,
and the last two stayed at zero the entire time. Figure 1(b) reveals
that JAL can discover effective policies quickly, but it does not truly
converge until several steps later (after 300K iterations on average).
Policies obtained by JAL demonstrate a beforehand understanding
between agents when executing a pass, such that the receiver moves
straight to intersect the ball without wasting much time.

In an extra experiment, we remove the defender keeping every-
thing else unchanged. No promising solutions were found within
10 runs of 400K iterations each. Just as in [4], IL and JAL normally
got stuck in a bad local minimum, where a single agent scores spo-
radically (about 50% of times) without cooperating with its partner.

4 CONCLUSIONS
This work successfully implemented IL and JAL in the offensive free-
kick task and within a 3D simulator. The addition of the defender
was proven to be a crucial factor leading to this achievement.

JAL was clearly superior to IL. They both converged after a com-
parable number of iterations due to full observability; however,
JAL discovered good strategies more consistently than IL. In addi-
tion, policies found by JAL reveal a higher degree of inter-agent
coordination than those found by IL.

Hence, we can conclude that for similar robotic domains JAL
constitutes a MARL alternative that should not be ignored.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1866



REFERENCES
[1] Adekunle A. Adepegba, Suruz Miah, and Davide Spinello. 2016. Multi-Agent

Area Coverage Control using Reinforcement Learning. In The 29th International
Florida Artificial Intelligence Research Society (FLAIRS) Conference: Autonomous
Robots and Agents. Key Largo, Florida, USA.

[2] Ronny Conde, José Ramón Llata, and Carlos Torre-Ferrero. 2017. Time-Varying
Formation Controllers for Unmanned Aerial Vehicles Using Deep Reinforcement
Learning. CoRR abs/1706.01384 (2017). arXiv:1706.01384 http://arxiv.org/abs/
1706.01384

[3] Ravi N. Haksar and Mac Schwager. 2018. Distributed Deep Reinforcement Learn-
ing for Fighting Forest Fires with a Network of Aerial Robots. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2018, Madrid,
Spain, October 1-5, 2018. 1067–1074. https://doi.org/10.1109/IROS.2018.8593539

[4] Matthew John Hausknecht. 2016. Cooperation and Communication in Multiagent
Deep Reinforcement Learning. Ph.D. Dissertation. University of Texas at Austin,
USA.

[5] R. A. Howard. 1960. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA.

[6] S. Hung and S. N. Givigi. 2017. A Q-Learning Approach to Flocking With UAVs
in a Stochastic Environment. IEEE Transactions on Cybernetics 47, 1 (Jan 2017),
186–197. https://doi.org/10.1109/TCYB.2015.2509646

[7] M. Knopp, C. AykÄśn, J. Feldmaier, and H. Shen. 2017. Formation control using
GQ(Îż) reinforcement learning. In 2017 26th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). 1043–1048. https://doi.

org/10.1109/ROMAN.2017.8172432
[8] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. CoRR abs/1509.02971 (2015).

[9] Yugang Liu and Goldie Nejat. 2016. Multirobot Cooperative Learning for Semi-
autonomous Control in Urban Search and Rescue Applications. J. Field Robot. 33,
4 (June 2016), 512–536.

[10] Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and Luan Van Nguyen.
2018. Cooperative and Distributed Reinforcement Learning of Drones for Field
Coverage. CoRR abs/1803.07250 (2018). arXiv:1803.07250 http://arxiv.org/abs/
1803.07250

[11] RoboCup Technical Committee. 2018. RoboCup Standard Platform League (NAO)
Rule Book.

[12] Thomas Röfer, Tim Laue, Yannick Bülter, Daniel Krause, Jonas Kuball, Andre
Mühlenbrock, Bernd Poppinga, Markus Prinzler, Lukas Post, Enno Roehrig, René
Schröder, and Felix Thielke. 2017. B-Human: Team Report and Code Release
2017. Technical Report. Deutsches Forschungszentrum für Künstliche Intelligenz,
Universität Bremen.

[13] L. S. Shapley. 1953. Stochastic Games. Proceedings of the National Academy
of Sciences 39, 10 (1953), 1095–1100. https://doi.org/10.1073/pnas.39.10.1095
arXiv:https://www.pnas.org/content/39/10/1095.full.pdf

[14] L. Zhou, P. Yang, C. Chen, and Y. Gao. 2017. Multiagent Reinforcement Learning
With Sparse Interactions by Negotiation and Knowledge Transfer. IEEE Transac-
tions on Cybernetics 47, 5 (May 2017), 1238–1250. https://doi.org/10.1109/TCYB.
2016.2543238

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1867

http://arxiv.org/abs/1706.01384
http://arxiv.org/abs/1706.01384
http://arxiv.org/abs/1706.01384
https://doi.org/10.1109/IROS.2018.8593539
https://doi.org/10.1109/TCYB.2015.2509646
https://doi.org/10.1109/ROMAN.2017.8172432
https://doi.org/10.1109/ROMAN.2017.8172432
http://arxiv.org/abs/1803.07250
http://arxiv.org/abs/1803.07250
http://arxiv.org/abs/1803.07250
https://doi.org/10.1073/pnas.39.10.1095
http://arxiv.org/abs/https://www.pnas.org/content/39/10/1095.full.pdf
https://doi.org/10.1109/TCYB.2016.2543238
https://doi.org/10.1109/TCYB.2016.2543238

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusions
	References



