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ABSTRACT
Unmanned autonomous vehicle assisted information gathering

missions have quickly picked up interest. Indeed, the advances

on drones are making this type of missions possible. Thus, we

study multi-agent path planning problems, namely reachability and

coverage, for such missions with a connectivity constraint. This

version of the multi-agent path planning asks to generate a plan, a

sequence of steps, for a group of agents that are to stay connected

during the missions while satisfying the specified goal.

In this paper, we study the complexity of the coverage and reach-

ability problems for a cooperation of agents with a connectivity

constraint which restrain their movement. We identify a class of

topological graphs which allows one to reduce the complexity of

the decision problems from PSPACE-complete to LOGSPACE. We

show, on the other hand, that the bounded versions of the previous

problems are NP-complete.
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Introduction. Search and rescue missions are difficult to under-

take and achieve. In fact, beyond the time constraint of such tasks

in order to retrieve the endangered individuals, the place to search

can be large as well as hazardous. Thus, unmanned autonomous

vehicles (UAV) have caught interest for their ability to be used in

unsafe conditions, without (or less) allocation of experts. Further-

more, multiple UAVs can be used to cover a large portion of the

place quicker than the experts could in most cases. This approach

is used for decision-making and, thus, the UAVs are connected with

a base at which an expert can analyze the reported data.
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The goal of this work is to study, complexity wise, the problems

associated with the usage of connected UAVs. The settings and

type of missions we consider are closely linked to the requirements

described by the use of UAVs for search and rescue missions. Hence,

we examine the complexity of generating reachability and coverage

plans of multiple connected agents on topological graphs.

Topological graphs are composed of two types of edges, namely

movement and communication edges. The movement edges de-

scribe the allowed movements between two nodes. A communica-

tion edge enables two agents to communicate from their respective

nodes. A plan is a sequence of configurations of agents on the topo-

logical graph. For a plan to be valid, it needs to keep the agents

connected with the base, which is a specific node of the graph. An

agent can be directly connected to the base with a communication

edge or it can be connected via other agents who act as relays.

Thanks to such relays, agents can cooperatively reach locations

behind obstacles which are not directly connected to the base.

Two major types of objectives arise from search and rescue mis-

sions. Either an agent is required to reach a specific location in

order to sense it, or the agents need to spread over the place to

examine several locations. UAVs can, for instance, be used for locat-

ing victims of an avalanche by quickly covering as much ground as

possible. We explore, in this paper, the complexity of the so-called

Reachability problem and the Coveraдe problems along with their

bounded versions, bReachability and bCoveraдe .
In Figure 1, we depict a coverage plan execution. The red node

denotes the base of the topological graph from which the agents

start and need to stay connected with.

The multi-agent path planning (MAPP) with connectivity con-

straint was introduced in [3], in which that the existence of a

bounded plan for the reachability of a configuration is shown NP-

hard. Recently, Tateo et al. showed that the existence of a connected

plan for the reachability is PSPACE-complete in [7]. We extend both

of the latter works by considering the connected coverage planning

and subclasses of topological graphs on which we can obtain more

efficient algorithms for the previously stated problems.

Preliminaries. As mentioned earlier, we study reachability and

coverage problems on subclasses of topological graphs. A directed
topological graph is a tuple G = ⟨V ,→, ⟩, V is a set of nodes,

→⊆ V × V is a set of directed movement edges and ⊆ V ×

V is a set of undirected communication edges. The subclasses of

topological graphs are named and stated as follows:
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Figure 1: Example of a mission execution.

• A neighbor-communicable topological graph (nc) is a topo-

logical graph in which v → v ′
implies v v ′

.

• A sight-moveable topological graph (sm) is a topological

graphwith→ undirected and reflexive andwheneverv v ′

there exists a sequence ρ = ⟨ρ1, . . . , ρn⟩ of nodes such that

v = ρ1, v
′ = ρn , v ρi and ρi → ρi+1 for all 1 ≤ i < n.

• A complete-communication topological graph (cc) is a topo-

logical graph in which → is undirected and reflexive, and

= V ×V .

Intuitively, a neighbor-communicable topological graph makes

sure that if an agent can move to another node in one step then both

nodes are communicating. In sight-moveable ones, the communica-

tion is restricted to line-of-sight communication and the agents can-

not communicate through obstacles. A complete-communication

topological graph can model a situation where a hovering agent

connects all agents to the base in the whole area.

On these classes of topological graphs, we study the reachabil-

ity of a particular configuration of agents in the graph, denoted

Reachability. We also study the problem of coverage of the graph,

we consider that a plan is covering if and only if every nodes of

the graph are visited during the plan by at least one agent, denoted

Coverage. Furthermore, we study the bounded versions of the pre-

vious problems, respectively denoted bReachability and bCoverage,
where a bound on the size of a plan is part of the input, and is

encoded in unary. These are the decisions problems associated to

the optimization problems for computing minimal plans.

Reach Cover bReach bCover
Directed PSPACE-c PSPACE-c

NP-c

[Hollinger]

NP-c

nc PSPACE-c

[Tateo et al.]

PSPACE-c

Undirected ?

sm

in LOGSPACE in LOGSPACE

NP-c

cc in LOGSPACE

Figure 2: Complexity results.

The results stated later consider that the agents are anonymous

and, thus, two configurations of agents on the graph are equivalent
if one is a reordering of the other. Furthermore, we do not consider

head-on- and meet- collisions. Hence, two agents can be located

at the same node or they can travel on the same edge in opposite

direction during a step of the plan.

Known results. The following theorem is extracted from the

original work of Hollinger and Singh in which the bounded con-

nected reachability problem is studied and proved to be NP-hard on

undirected topological graph. Thus, we can state this lower bound

on directed topological graphs.

Theorem 1 ([3]). bReachabilitydir is NP-hard.

Tateo et al. shown that the existence of a plan for the reachability

is PSPACE-complete on directed graphs and discuss that this result

extends to directed topological graphs with a base.

Theorem 2 ([7]). Reachabilitydir is PSPACE-complete.

Contributions. We extend previously known results and show

that the coverage problems are PSPACE-complete on directed and

nc-graphs, and remarkably show that the complexity is reduced

to LOGSPACE for sm- and cc-graphs. Bounded reachability and

coverage problems do however remain NP-complete for sm-graphs.

All our results are summarized in Fig. 2.

To obtain the LOGSPACE algorithm,we use the result of Reingold

who showed that the undirected s-t connectivity problem is in

LOGSPACE [6]. Since LOGSPACE ⊆ NC, it admits polylogarithmic

time algorithm on a parallel machine with a polynomial number of

processors [2]. Although the bounded problems on sight-moveable

topological graphs are intractable, it might be possible to use, for

instance, SAT solvers, or obtain polynomial-time approximation

algorithms.We lack the complexity result for undirected topological

graphs, which is shown by a question mark in the table.

Related work. Coverage planning has been applied to other ar-

eas such as lawn mowing and floor cleaning [1]. This problem was

addressed with analytic techniques [8, 10]. We advocate for the use

of formal methods for provable guarantees on the behaviors; see

e.g. [4, 9]. The coverage problem presented is closely related to the

traveling salesman problem (TSP) or more precisely, its generaliza-

tion, multiple TSP. An overview of TSP and its extensions can be

found in [5]. However, to the best of our knowledge, a connected

version of mTSP or VRP has not been studied.
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