
MARL-PPS: Multi-agent Reinforcement Learning with Periodic
Parameter Sharing

Extended Abstract

Safa Cicek
UCLA, Los Angeles, United States

safacicek@ucla.edu

Alireza Nakhaei
Honda Research Institute, Mountain View, United States

anakhaei@honda-ri.com

Stefano Soatto
UCLA, Los Angeles, United States

soatto@ucla.edu

Kikuo Fujimura
Honda Research Institute, Mountain View, United States

kfujimura@honda-ri.com

ABSTRACT
We present a multi-agent reinforcement learning algorithm that is
a simple, yet effective modification of a known algorithm. External
agents are modeled as a time-varying environment, whose policy
parameters are updated periodically at a slower rate than the plan-
ner to make learning stable and more efficient. Replay buffer, which
is used to store the experiences, is also reset with the same large
period to draw samples from a fixed environment. This enables us
to address challenging cooperative control problems in highway
navigation. The resulting Multi-agent Reinforcement Learning with
Periodic Parameter Sharing (MARL-PPS) algorithm outperforms
the baselines in multi-agent highway scenarios we tested.

ACM Reference Format:
Safa Cicek, Alireza Nakhaei, Stefano Soatto, and Kikuo Fujimura. 2019.
MARL-PPS: Multi-agent Reinforcement Learning with Periodic Parameter
Sharing. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 3 pages.

1 INTRODUCTION
Our goal is to learn a long-term policy for highway driving where
vehicles travel in the same direction at high speed and are expected
to cooperate. In Fig. 1-left, the green vehicle can avoid the obstacle
in black without changing speed only with the cooperation of the
red vehicle. To enable cooperation, the red vehicle must maintain
a predictive model of the green one (See Fig. 1-right). If during
training, the policy of other agents changes rapidly relative to
the update of the ego-vehicle’s plan, one cannot learn an accurate
prediction of future states, and therefore an optimal policy. In this
work, we focus on this “moving environment” problem.

We aim to design planning algorithms to address these cases. A
natural tool to this end, in the absence of expert data, is reinforce-
ment learning (RL). In particular, Deep Q-Networks (DQN) [9], in-
troduced for single-agent cases, have been extended to multi-agent
reinforcement learning (MARL) in high-dimensional observation
spaces [4, 13].

To train and evaluate MARL-PPS, we developed a highway sim-
ulator where each vehicle has limited ego-centric observations (See

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Left: initial positions of two vehicles. The black rec-
tangle is a static obstacle to be avoided. Right: the red vehicle
must maintain a predictive model of the green one for coop-
erative behaviour.

Fig. 2). Observations are given in the form of an occupancy grid,
a representation suitable for ingestion by a convolutional neural
network (CNN). Vehicles can observe 100m ahead and behind in
the horizontal axis. In the vertical axis, agents observe 1.5 lanes
from its center. All the vehicles are modeled with the second order
Dubin motion model [6]. Agents do not have any knowledge of
the global map such as the number of lanes, current lane, distance
to the closest lane or road width. The sides of the highway, static
obstacles and vehicles are all represented as occupied areas in the
observation, making the occupancy grid a binary map. The ego-
vehicle state is also fed to a fully connected layer for preprocessing.
Outputs of the fully connected layer and the CNN are concatenated
and fed to a Long short-term memory (LSTM) [3]. 1 Its output is
processed with another fully connected layer to map into space
whose dimension is the same as the number of actions. This map
gives the Q-value predictions for each action. As a final step, the
epsilon-greedy block chooses the action (e.g. acceleration and steer-
ing velocity) to execute.

2 MARL-PPS
Given the samples from the simulator, minimizing this DQN ob-
jective can be considered as supervised learning (SL). But, unlike
SL, the target is moving within training for the given observation
ot either because of (i) moving target network parameter or (ii)
moving next observation ot+1. The first problem is tackled in [9] by
updating target parameters with large period Tt . The instability of
ot+1 given ot is because of the changing policies of other agents. To
handle this problem, we suggest to apply a similar idea: We update
the policies of other agents (non-ego agents) with the policy of the
1Since each agent has limited observation range, the sequential decision-making
process can be formulated with POMDP. Hence, we are using LSTM as a function
approximator as in [2].

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1883



Figure 2: Screenshots are from the highway simulator RL
agents are trained on. The top panel is the scene with two
vehicles (red and green rectangles) and a static obstacle to be
avoided in the top lane (black rectangle). The bottom panel
shows the observation of the red vehicle.

ego-agent periodically with a fixed number of iterations Tn ≫ 1.
The period Tn should be chosen large enough to keep the training
objective stable until the ego-agent can optimize for it.2 Within
Tn iterations, the target network of the ego-agent should also be
updated many times for both the ego Q-network and the ego tar-
get Q-network to converge. One can consider the Tn iterations in
which non-ego agent policies kept fixed, as one stage of learning.
So, within that stage, the target network parameters are updated
many times to optimize for that particular environment i.e. the
period at which the ego-target network is updated (Tt ) is chosen to
be smaller than Tn .

Experience replay introduced by [9] was essential to solve the
moving target problem in fitted Q-learning approaches. However,
in the multi-agent setting, the use of the replay buffer becomes
problematic due to the changes in the policies of other agents.When
the replay buffer has samples from different policies of other agents,
it gets harder for the ego-agent to fit a particular environment.
Hence, we choose to reset the replay buffer whenever we update
other agent policies to make sure that samples are drawn for the
same policy of other agents. So, the replay buffer is reset at every
Tn time steps.

Interaction-unaware reward for the motion planning task penal-
izes collision with either of the static obstacles, highway edges or
other agents. It also encourages driving at the desirable speed with
desirable direction. Finally, small jerk is encouraged. Tomake agents
cooperative, we include the reward of other agents into the reward
that ego-agent is maximizing for. This interaction-aware reward for
the ego-agent at time t can be written as r1,t = r̃1,t +λcoop

∑J
j=2 r̃ j,t

where λcoop is the cooperativeness measure of the agent and r̃ j,t
for j > 1 are the interaction-unaware reward functions of other
agents. Only the rewards of agents which are within 25m ahead
or behind of the ego-vehicle are added to the interaction-aware
reward to reduce the effect of credit assignment problem [8, 12].

3 RESULTS
We compare our algorithm MARL-PPS to two baselines that we
will call “independent-DQN” [13] and “synchronic-DQN” [1]. In
independent-DQN, each agent updates its DQN policy with its own
observations concurrently. In synchronic-DQN, one ego-agent up-
dates its policy with its own observations and shares its parameters
at every time step with others.

2In practice, ego-agent is also not updated at every time step to make sure that buffer
has enough new samples. But, the period for this (learning frequency) is very small
(e.g. 4).

Figure 3: Training curves for baselines and the proposed al-
gorithm. The left plot shows the mean epoch rewards for
different methods. The right plot is for the average speed of
the agents.

The experimental setting is illustrated in Fig. 2. The expected
behaviour is the green vehicle to steer into the middle lane, so
they can both move at the optimal speed. An episode ends for an
agent when it collides or exceeds the maximum allowed number of
iterations.

Training plots are given in Fig. 3. All the results are averaged
over 3 different runs for each algorithm and associated means
are plotted along with deviations. Fig. 3-left is the average over
cumulative reward within an episode vs episode number. As it can
be seen, MARL-PPS converges to a better solution benefiting from
the stability of the training. Note that agents could learn to slow
down and stop to avoid collisions. To make sure that this does
not happen, we are rewarding moving in the desired speed and
direction. Fig. 3-right shows the average speed of agents verifying
that they do not learn to stop.

4 DISCUSSION
Decentralized learning is a common approach to solve MARL prob-
lems [5, 7, 10, 11]. A naive way is to let all agents store independent
policies updated concurrently with their individual observations.
Then, the number of value networks (and therefore memory us-
age) is linear in the number of agents. Furthermore, the number
of updates and therefore training time will scale with the number
of agents making this approach impractical when J is very large.
Parameter sharing (PS) can tackle the problems of growing memory
and computation time. In PS, observations and actions are individ-
ual, but parameters are shared during training thus one ego-agent
learns from its own observations and shares its parameters with
others. This way, better sample efficiency and memory usage can be
achieved. But, just like concurrent learning, in PS also environment
dynamics change as policies of other agents are updated, making
stable training harder.

We proposed a novel MARL algorithm that is communication-
cost and memory efficient outperforming the baselines in the high-
way planning. With MARL-PPS, only two networks are used at
training time (one for ego-agent and the other for all the other
agents) for any J > 1 making it applicable to large J . Further-
more, parameters are shared only at every Tn ≫ 1 steps making
communication cost Tn times less than the synchronic-parameter
updating.

Acknowledgment Research supported by ONR N00014-17-1-
2072 and ARO W911NF-17-1-0304.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1884



REFERENCES
[1] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-

agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems. Springer, 66–83.

[2] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent q-learning for
partially observable mdps. CoRR, abs/1507.06527 (2015).

[3] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[4] Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi
Lee. 2018. A Deep Policy Inference Q-Network for Multi-Agent Systems. In
Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems. International Foundation for Autonomous Agents and Multiagent
Systems, 1388–1396.

[5] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. 2018. Human-level performance in first-person multi-
player games with population-based deep reinforcement learning. arXiv preprint
arXiv:1807.01281 (2018).

[6] Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
[7] Miao Liu, Kavinayan Sivakumar, Shayegan Omidshafiei, Christopher Amato, and

Jonathan P How. 2017. Learning for multi-robot cooperation in partially observ-
able stochastic environments with macro-actions. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 1853–1860.
[8] Laëtitia Matignon, Guillaume Laurent, and Nadine Le Fort-Piat. 2007. Hysteretic

Q-Learning: an algorithm for decentralized reinforcement learning in cooperative
multi-agent teams.. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS’07. 64–69.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[10] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-
Yuan Liu, Jonathan P How, and John Vian. 2017. Decentralized control of multi-
robot partially observable Markov decision processes using belief space macro-
actions. The International Journal of Robotics Research 36, 2 (2017), 231–258.

[11] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and
John Vian. 2017. Deep decentralized multi-task multi-agent reinforcement learn-
ing under partial observability. arXiv preprint arXiv:1703.06182 (2017).

[12] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. 2018. Lenient
multi-agent deep reinforcement learning. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. International Founda-
tion for Autonomous Agents and Multiagent Systems, 443–451.

[13] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and
competition with deep reinforcement learning. PloS one 12, 4 (2017), e0172395.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1885


	Abstract
	1 Introduction
	2 MARL-PPS
	3 Results
	4 Discussion
	References



