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ABSTRACT
Multi-agent reinforcement learning has gained lot of popularity
primarily owing to the success of deep function approximation
architectures. However, many real-life multi-agent applications of-
ten impose constraints on the joint action sequence that can be
taken by the agents. In this work, we formulate such problems in
the framework of constrained cooperative stochastic games. Un-
der this setting, the goal of the agents is to obtain joint action
sequence that minimizes a total cost objective criterion subject to
total cost penalty/budget functional constraints. To this end, we uti-
lize the Lagrangian formulation and propose actor-critic algorithms.
Through experiments on a constrained multi-agent grid world task,
we demonstrate that our algorithms converge to near-optimal joint
action sequences satisfying the given constraints.
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1 INTRODUCTION
In the reinforcement learning (RL) paradigm, an agent interacts with
the environment by selecting actions in a trial and error manner.
The agent receives rewards for the chosen actions and the goal of
the agent is to learn to choose actions so as to maximize a certain
long-run reward objective. Many real world problems however
cannot be considered in the context of single agent RL owing to
which the study of the multi-agent RL framework has emerged [5].
In this paper, we consider the fully cooperative multi-agent setting
which has gained popularity in recent times [6–9, 11, 12].
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In many real-life multi-agent applications one often encounters
constraints specified on the joint action sequence taken by the
agents. Under this setting, the goal of the agents is to obtain the
optimal joint action sequence that minimizes a long-run objective
function while meeting the constraints. These problems are studied
as “Constrained Markov Decision Process” (C-MDP) [1–4, 10] for
the single agent RL setting and as “Constrained stochastic game
(C-SG)” for the multi-agent RL setting respectively. In this work,
our goal is to develop multi-agent RL algorithms for the setting of
constrained cooperative stochastic games.

2 MODEL
A stochastic game is an extension of the single agent Markov De-
cision Process to multiple agents. A stochastic game is described
by the tuple (n, S,A1, ...An ,T ,C,γ ) where n denotes the number
of agents participating in the game, S denotes the state space of
the game, Ai , denotes the action space of agent i, i = 1, . . . ,n,
C : S ×A1 × ...×An × S −→ R denotes the common cost incurred by
the agents for the joint action profile (a1,a2, . . . ,an ), ai ∈ Ai , i ∈
{1, 2 . . . ,n},T : S ×A1 × ... ×An × S −→ [0, 1] denotes the probabil-
ity transition mechanism and γ ∈ (0, 1] is the discount factor. Let
Xt ∈ S denote the state of the game at time t . Assume thatX0 is sam-
pled from an initial distribution D. Let πi : S ×A −→ [0, 1] be the sto-
chastic policy followed by the agent i . Let P : S×A1×...×An×S −→ R
be the single stage cost function for the common penalty cost and
α be a certain prescribed penalty threshold.

The objective of the agents in the cooperative stochastic game is
to learn a joint constrained optimal policy π∗ = (π∗

1 , . . . ,π
∗
n ), i.e.,

the one that gives a solution to the following constrained optimiza-
tion problem:

min
π

E
[ τ−1∑
t=0

γ tC(Xt ,π (Xt ),Xt+1)
]

s.t (1)

E
[ τ−1∑
t=0

γ tP(Xt ,π (Xt ),Xt+1)
]
≤ α , (2)

where π = (π1, . . . ,πn ), α ∈ R is given and τ ≥ 1 denotes the
number of time steps until the terminal state is reached. In order
to solve for π∗, we consider the Lagrangian formulation of the
multi-agent constrained setting [2, 4]. Let λ denote the Lagrange
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multiplier for the constraint.We define the Lagrangian cost function
as follows:

L(π , λ) = E
[ τ−1∑
t=0

γ t
(
C(Xt ,π (Xt ),Xt+1) +

λP(Xt ,π (Xt ),Xt+1)
) ]

− λα . (3)

The optimal policy π∗ and the corresponding optimal Lagrange
parameter vector λ∗ are obtained as follows:

(λ∗,π∗) = arg sup
λ

inf
π

L(π , λ) (4)

3 PROPOSED ALGORITHMS
To accomplish the task of finding the optimal Lagrange multipliers
and optimal policy, we propose a Nested Actor-Critic (N-AC) archi-
tecture. In this setup, the inner (policy) actor-critic computes the
policy of the agents while the outer (penalty) actor-critic computes
the Lagrange parameters.

3.1 JAL N-AC
In JAL N-AC (Joint Action Learners N-AC), all the agents compute
the optimal joint policy of all the agents in the SG. Therefore, the
action space is the cartesian product of action spaces of all the
agents.

The policy (inner) critic parameters θc are trained by minimizing
the loss parameter: L(θc ) = (rt + γVθc (Xt+1) − Vθc (Xt ))

2 where
rt = C(Xt ,at ,Xt+1) + λPt (Xt ,at ,Xt+1) and Vθc (Xt ) denotes the
value function approximated by the critic architecture for the state
Xt with reward rt .

Having found the parameters θc for the policy critic, the policy
actor utilizes these to compute policy gradients for improving the
policy θπ as follows:

θπ (t + 1) = θπ (t)−a(t)(rt + γVθc (Xt+1) −Vθc (Xt ))

∇θπ logπ (at |Xt )).

The penalty critic estimates the penalty value function parameters
θp . These parameters are trained by minimizing the loss function
L(θp ) defined as

L(θp ) = (P(Xt ,at ,Xt+1) + γVθp (Xt+1) −Vθp (Xt ))
2,

where Vθp (Xt ) is the value function associated with the penalty
cost P in the state Xt .

Finally, the Lagrange parameters are updated by the penalty
actor by performing stochastic gradient ascent as follows ([2, 4]):

λt+1 =max(0, λt + b(t)(Vθp (Xt ) − α)),

where b(t) is the step-size parameter and λt is the Lagrange param-
eter at time t .

3.2 Independent N-AC
In this algorithm, each agent has its own nested actor-critic archi-
tecture i.e., there are totally n nested actor-critic architectures. Each
of the agents learns parameters of its nested actor-critic architec-
ture separately and each agent i estimates its individual policy πi .
That is, each agent maintains its own policy actor-critic as well as
penalty actor-critic network.

4 EXPERIMENTS AND RESULTS

(a) Performance of algorithms in
terms of minimizing the total
cost objective

(b) Performance of algorithms in
terms of minimizing the penalty
cost objective

Figure 1: Performance of our proposed algorithms

We consider a constrained grid world experiment where there
is a grid of size 4 × 4 and two agents in the grid. The objective of
the agents is to learn the shortest path from any given source to a
prescribed target, under the constraint that the maximum overlap
in path is less than the penalty constraint of α = 0.1. The state of
each agent si , i ∈ 1, 2 is a vector of size 16, with 1 at the current
position of the agent i and 0 at all other positions. The action of each
agent in the grid includes moving up, down, left, right or staying
in the same position, wherever applicable. In Figure 1, we can see

Table 1: Performance of converged policy in constrained
grid world

Algorithm Average Penalty
of the converged policy

JAL N-AC 0.0593
Independent N-AC 0.0656

that both the expected total cost and the expected penalty cost
decrease as the number of episodes increase in both the algorithms.
The expected total cost and the penalty cost are computed as the
averages of total cost and penalty cost, respectively obtained over
a single run of 10, 000 training episodes. In Table 1, we report the
average penalty obtained by the converged policy over 10, 000 test
episodes of both the proposed algorithms. We conclude that our
algorithms compute near-optimal policies that not only minimize
the total cost but also meet the penalty constraints.
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