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ABSTRACT
We consider proportionality in multiwinner elections and observe

that PAV and STV are fundamentally different. We argue that the

former is proportional and the latter is degressively proportional.
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1 INTRODUCTION
We consider the problem of selecting a committee that represents

the voters proportionally. One way of finding such a committee is

to apply the Single Transferable Vote (STV) rule, which is considered

to give proportional results, while another one is to use Propor-
tional Approval Voting (PAV) [8, 15]; it has recently been shown

that PAV satisfies a number of appealing properties pertaining to

proportionality [1–3, 11, 12]. Yet, even though both these rules aim

at achieving proportional representation, they might produce fun-

damentally different results. For example, let us consider elections

(in two dimensional Euclidean space) where the ideal points of the

candidates are drawn uniformly at random from a disc in the centre

(dark grey points in the picture on the left of Figure 1) while the

ideal points of the voters are drawn uniformly at random from

the ring that surrounds that disc (light grey points in Figure 1).

Each voter ranks the candidates from best to worst by sorting their

ideal points with respect to the Euclidean distance from the voter’s

points [4, 5].

We generated 100 elections of this form (each with 100 voters and

20 candidates) and for each of them we computed PAV and STV

winning committees of size 10; we present the ideal points of the

members of these winning committees in the pictures in the centre

(PAV) and on the right (STV) of Figure 1, as black points; both

pictures contain the points of the winning committee members
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from all the elections. We see that STV is better at mimicking the

distribution of the voters, whereas PAV is better at selecting more

central candidates, that represent all the voters.

We conclude that there is no single notion of proportionality.

We refer to the kind of proportionality represented by STV as

individual proportionality and to the kind represented by PAV as

group proportionality. We seek to understand these notions better by

expressing STV in the same language as PAV (i.e., as an OWA-based

rule). Specifically, we find that STV is degressively proportional.

2 PRELIMINARIES
For an integer t , we denote the set {1, . . . , t} by [t]. By an election

E = (C,V ), we mean a pair that consists of a set of candidates

C = {c1, . . . , cm } and a set of voters V = {v1, . . . ,vn }, where each
voter vi ∈ V has a linear preference order over all the candidates

from C . A multiwinner voting rule R is a function that given an

election E = (C,V ) and a committee size k , outputs a family of

size-k subsets of C , the committees that tie as election winners.

Single Transferable Vote (STV).We consider the following vari-

ant of the STV rule (see, e.g., [10]). Let E = (C,V ) be the input

election with n voters. We use Droop quota q = ⌊ n
k+1 + 1⌋. To

compute a winning committee of size k , start with an empty com-

mittee and execute the following steps until the committee has k
candidates: (1) If some candidate is ranked first by at least q voters,

then find a candidate c that is ranked first by the largest number

of voters and remove him from the election, together with some

q voters that rank him first. (2) If no candidate is ranked first by

Figure 1: 2D scatter plots for the simulation in the intro-
duction. Light grey ring of points in each picture represent
the voters. Central grey points in the left picture represent
the candidates. Black points in themiddle and right pictures
represent the winners under PAV and STV rule respectively.
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at least q voters, then find a candidate d that is ranked first by the

fewest voters and remove d from the election.

OWA-Based Rules. A single-winner scoring function for the case

of m candidates is a non-increasing function γ : [m] → R that

associates each position in a preference order with a non-negative

score. We focus on the Borda scoring function: βm (i) =m − i; the
k-Approval scoring function: αk (i) = [i ≤ k]; and the k-Truncated

Borda scoring function: βkm (i) = (k − i) · [i ≤ k] (for a logical

expression F , by [F ] we mean 1 if F is true and 0 otherwise).

An OWA-based multiwinner rule Rf , form candidates and com-

mittees of size k , is defined through a single-winner scoring func-

tion γ and an OWA vector Λ = (λ1, . . . , λk ) (OWA stands for ordered
weighted average [16]). If some voter v ranks members of a given

size-k committeeW on positions i1 ≤ . . . ≤ ik , then v assignsW a

score of fm,k (i1, . . . , ik ) = λ1γ (i1) + . . . + λkγ (ik ). The Rf -winning

committees are exactly those for which the sum of the scores given

by the voters is the highest. PAV uses the k-Approval scoring func-

tion and OWA vectors of the form (1, 1/2, . . . , 1/k). OWA-based rules

are due to Skowron et al. [13]; see also [6, 14].

Euclidean Elections. In 1D Euclidean elections, each voter and

candidate has an ideal point p ∈ R. Each voter forms his prefer-

ence order by sorting the candidates with respect to the increasing

distance of their ideal points from his. We focus on 1D Euclidean

elections where the ideal points are drawn from the [0, 1] interval.

In the Uniformmodel, the ideal points of the candidates and voters

are drawn uniformly at random; in the Uniform/Gaussian model,

the ideal points of the candidates are drawn uniformly at random,

whereas the ideal points of the voters are drawn from the Gaussian

distribution with mean 0.5 and std. deviation 0.15; in the Asymmet-

ric Gaussian, model the ideal points of the candidates and voters

are drawn with probability 30% from a Gaussian distribution with

mean 0.25, and with probability 70% from a Gaussian distribution

with mean 0.75 (both Gaussians have std. deviation 0.1).

3 RESULTS
Our goal is to find an OWA-based rule that approximates STV as

well as possible. We present our methodology and then the results.

Methodology. To evaluate how similar two committees from

an Euclidean election are, we use the following distance: Con-

sider some election E and committees U = {u1, . . . ,uk }, W =

{w1, . . . ,wk }. For each uj and w j , we write p(uj ) and p(w j ), re-

spectively, to denote their ideal points. Denoting the set of all per-

mutations of [k] by Sk , we define the distance betweenW andU as

dist(W ,U ) = minσ ∈Sk
1

k
∑k
i=1

(
p(wi ) − p(uσ (i))

)
2

. In other words,

we find a matching between the members ofW and U that mini-

mizes the sum of the squares of the distances between the matched

committee members.

To find an OWA-based rule that approximates STV, we generate

elections E1 = (C1,V1), . . . ,Et = (Ct ,Vt ) and for each election Ei we
compute an STV committeeWi (of a given size k). Let Rγ ,Λ be an

OWA-based rule, defined through a scoring function γ and an OWA

vector Λ. For each election Ei , we compute one committee Ui ∈

Rγ ,Λ(Ei ,k). We define the distance between Rγ ,Λ andW1, . . . ,Wt to

be dist(Rγ ,Λ;W1, . . . ,Wt ) =
1

t
∑t
i=1 dist(Wi ,Ui ). We find an OWA

vector that minimizes this value (using algorithm from [7]).

STV as an OWA-Based Rule. Let γ be one of our three single-

winner scoring functions and let E be a model of generating elec-

tions, E ∈ {Uniform, Uniform/Gaussian, Asymmetric Gauss-

ian}. We generated t = 50 elections E1, . . . ,Et from E and, using

our methodology, we computed the OWA vector Λ = (λ1, . . . , λk )
that minimized the distance dist(Rγ ,Λ;W1, . . . ,Wt ) (see Figure 2). To

better understand the computed OWA vectors, we sought further

vectors that would be as close to the computed ones as possible,

but that would be expressed using a simple formula. We found that

vectors of the form h(x ,y) =
(
1,

1/2x+y
1+y ,

1/3x+y
1+y , . . . ,

1/nx+y
1+y

)
suffice.
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Figure 2: OWA vectors for approximating STV using 10-
Approval (left) and 10-Tr.-Borda (right) scoring functions.

Degressive Proportionality. In the related model of apportion-

ment, where the task is to divide parliamentary seats among politi-

cal parties, proportionality has a natural interpretation—the num-

ber of seats obtained by each party should be proportional to the

number of votes the party received. In contrast, a voting rule is

proportional in a degressive way [9] if it assigns disproportionately

many seats to parties with smaller support. Interestingly, there is a

strong correlation between the slope of the OWA vector and the

type of proportionality the rule guarantees [11].

Intuitively, this relation can be explained as follows. Consider

an OWA vector Λ = (1/z1, 1/z2, 1/z3, . . . , 1/zn), which is normalized

so that z1 = 1. We define the vector cost = (z1, . . . , zn ). Then, the
i-th element of this vector can be interpreted as the relative cost

of obtaining the i-th seat. Indeed, when R decides which of the

two parties, Pi or Pj , should get the next seat, R compares the

numbers of voters supporting each of these parties against the

costs of obtaining the additional seats, and chooses the party with

the higher ratio. Thus, we have the following observation. Let R be

an OWA rule with k-Approval scoring function and a normalized

OWA vector Λ = (1/z1, 1/z2, 1/z3, . . . , 1/zn). Let cost be as defined

above. Then, the following hold:

(1) If cost is linear, then R is linearly proportional.

(2) If cost is convex, then R is degressive proportional.

(3) If cost is concave, then R is progressive proportional.

Our results suggest that STV is degressively proportional.

Conclusions. We conclude that there are several types of pro-

portionality for multiwinner electons that can be classified based

on the OWA vectors used to define or approximate voting rules.

ACKNOWLEDGMENTS
Piotr Faliszewski was supported by the National Science Centre,

Poland, under project 2016/21/B/ST6/01509.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1947



REFERENCES
[1] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. 2017. Justified

Representation in Approval-Based Committee Voting. Social Choice and Welfare
48, 2 (2017), 461–485.

[2] H. Aziz, E. Elkind, S. Huang, M. Lackner, L. Sánchez-Fernández, and P. Skowron.

2018. On the Complexity of Extended and Proportional Justified Representation.

In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI ‘18).
902–909.

[3] M. Brill, J. Laslier, and P. Skowron. 2017. Multiwinner Approval Rules as Ap-

portionment Methods. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence (AAAI ‘17). 414–420.

[4] J. M. Enelow and M. J. Hinich. 1984. The spatial theory of voting: An introduction.
CUP Archive.

[5] J. M. Enelow and M. J. Hinich. 1990. Advances in the spatial theory of voting.
Cambridge University Press.

[6] P. Faliszewski, P. Skowron, A. Slinko, and N. Talmon. 2019. Committee Scoring

Rules: Axiomatic Characterization andHierarchy. ACMTransactions on Economics
and Computation 6, 1 (2019), Article 3.

[7] P. Faliszewski, S. Szufa, and N. Talmon. 2018. Optimization-Based Voting Rule

Design: The Closer to Utopia the Better. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ‘18). 32–40.

[8] M. Kilgour. 2010. Approval Balloting for Multi-Winner Elections. In Handbook
on Approval Voting. Springer. Chapter 6.

[9] Y. Koriyama, A. Macé, R. Treibich, and J-F. Laslier. 2013. Optimal apportionment.

Journal of Political Economy 121, 3 (2013), 584–608.

[10] H. Kuhn. 2000. Better Voting Methods Through Technology: The Refinement-

Manageability Trade-Off in the Single Transferable Vote. Public Choice 103, 1–2
(2000), 13–34.

[11] M. Lackner and P. Skowron. 2018. Consistent Approval-Based Multi-Winner

Rules. In Proceedings of the 19th ACM Conference on Economics and Computation.
47–48.

[12] L. Sánchez-Fernández, E. Elkind,M. Lackner, N. Fernández, J. A. Fisteus, P. Basanta

Val, and P. Skowron. 2017. Proportional Justified Representation. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI ‘17). 670–676.

[13] P. Skowron, P. Faliszewski, and J. Lang. 2016. Finding a collective set of items:

From proportional multirepresentation to group recommendation. Artificial
Intelligence 241 (2016), 191–216.

[14] P. Skowron, P. Faliszewski, and A. Slinko. 2019. Axiomatic Characterization of

Committee Scoring Rules. Journal of Economic Theory 180 (2019), 244–273.

[15] T. Thiele. 1895. Om Flerfoldsvalg. In Oversigt over det Kongelige Danske Vidensk-
abernes Selskabs Forhandlinger. 415–441.

[16] R. Yager. 1988. On Ordered Weighted Averaging Aggregation Operators in

Multicriteria Decisionmaking. IEEE Transactions on Systems, Man and Cybernetics
18, 1 (1988), 183–190.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1948


	Abstract
	1 Introduction
	2 Preliminaries
	3 Results
	References



