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ABSTRACT
Interactions between agents are usually designed from a global
viewpoint. However, the implementation of a multi-agent inter-
action is distributed. This difference can introduce problems. For
instance, it is possible to specify protocols from a global viewpoint
that cannot be implemented as a collection of individual agents.
This leads naturally to the question of whether a given (global)
protocol is enactable. We consider this question in a powerful set-
ting (trace expressions), considering a range of message ordering
interpretations (specifying what it means to say that an interaction
step occurs before another), and a range of possible constraints
on the semantics of message delivery, corresponding to different
properties of the underlying communication middleware.
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1 INTRODUCTION
Agent Interaction Protocols (AIP) are formal or informal specifica-
tions describing the communicative behaviour of heterogeneous
and distributed agents inside a multi-agent system (MAS). These
global protocols1 unambiguously denote which interactions are
allowed, when they are allowed, and in which order. They are global
because they model the entire MAS from a high-level perspective
and not from the point of view of each single participant. This level
of abstraction gives the software engineer freedom of choice on

1These are modelled using a range of formalisms, including global types [6], Petri nets
[17], WS-CDL [22], AUML [15], statecharts [13], and causal logic [12].
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how to implement the protocols and how to “enforce” the interac-
tion order. Consider for example the following AIP involving three
different agents Alice , Bob and Carol :

AIP1 = Alice
M1
=⇒ Bob · Alice

M2
=⇒ Carol

where a1
M
=⇒ a2 denotes the interaction of a1 and a2 exchanging

the messageM and “·” denotes interaction concatenation. This is a
simple example of a possible formal definition of a global interac-
tion protocol. The constraint on the message ordering is clear: M1
must occur beforeM2. Even though this is a well-stated constraint
from a high-level viewpoint, how can it be enforced by the involved
parties? Or, from a more practical viewpoint, how can the involved
parties implement the protocol? If we consider AIP1, the constraint
that M1 must occur before M2 can be enforced in four different
ways [9]: Alice must send M1 before sending M2 (denoted “SS”),
Alice must sendM1 beforeCarol can receiveM2 (SR), Bob must re-
ceiveM1 beforeAlice can sendM2 (RS), or finally, Bob must receive
M1 beforeCarol can receiveM2 (RR). Of these four interpretations,
if we consider the first one, it can be easily enforced by the involved
parties, because Alice enforces the sending order (she is the sender
for both the messages). Instead, if we consider the third interpre-
tation, how can Alice know that Bob has already received M1 to
correctly send M2? She can not. This means that, depending on
the message ordering we choose for interpreting the protocol, the
latter may or may not be enforceable. Naturally, by knowing the
communication model we could have more guarantees on how the
messages are delivered, consequently changing the outcome.

This kind of issue is not new in the field and various authors
use different terms for global protocols that can be enforced: con-
formant [16], enforceable [2, 8], enactable [9], implementable [20],
projectable [5, 14], realizable [18, 21]. The concept behind these
names is however the same: by executing the localised versions
of the protocol implemented by each participant, the global pro-
tocol behaviour is obtained, with no additional communication.
We will use the term enactability [9] to denote this property. How-
ever, despite the large amount of work on enactability, there is no
existing work that considers both the intended message ordering
and the communication model of the infrastructure in which the
agents will be implemented, that recognises the need to use a deci-
sion structure to enforce consistent choices, and that provides an
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implementation for checking protocol enactability. Together, these
are the innovative and original features of our contribution2.

2 RESULTS AND DISCUSSION
Our approach starts from the definition of a global AIP τ – using the
trace expression formalism [1] – and then following these steps3.

Choose the Message Ordering Interpretation. We choose a message
ordering interpretation moi (based on [9, 16]) and we formalise
the semantics Jτ Kmoi which is a variant of the trace expression
semantics Jτ K that is defined in terms of events (sending/receiving
of messages) rather than interactions. The possible sequences of
events are constrained: given a situation where τ specifies thatM1
must occur before M2, we constrain the sequence of events with
the appropriate constraint on events corresponding to the selected
moi. For example, given the moi thatM1 beforeM2 means thatM1
must be sent beforeM2 is sent (SS), we apply that constraint.

Identify the Communication Model. We identify the communica-
tion model CM (based on [7] with a standard synchronous commu-
nication model in addition) used by our MAS, and we formalise its
semantics by defining the corresponding language of event traces
that incorporates the appropriate restrictions, ruling out event
sequences that violate the communication model CM. We then in-
tersect this language with the set of traces generated by Jτ Kmoi,
obtaining the new semantics for global API τ : Jτ KCMmoi.

Distribute the global protocol. Supposing that τ involves agents
a1, · · · ,an , we define the distribution of τ , denoted ⌜τ ⌝, as ⌜τ ⌝ =
τa1 ∥ · · · ∥τan . Here, τA denotes the projection4 of τ onto agent A
and the ∥ operator defines parallelism between the projections5.
To generate the set of traces recognized by ⌜τ ⌝ we need to define
a decision structure d(τ ). The heart of the issue is that the trace
expression notation offers a choice operator (∨), which is adequate
for global protocols. However, for local protocols it is important to
be able to distinguish between a choice that represents a free (local)
choice, and a choice that is forced by earlier choices. Using the
decision structure, we can define the semantics for the distributed
protocol Jτ Kdist =

⋃
dt ∈d (τ )Jτa1 ∥ · · · ∥τan Kdt , where Jτ Kdt is the

standard semantics constrained6 with dt . As before, we denote the
intersection with the language denoted by CM as Jτ KCMdist .

Finally, we have everything we need to define the notion of weak
and strong enactability for τ .

Definition 2.1 (Strongly/Weakly Enactable). Let τ be an interac-
tion protocol, {a1,a2, · · · ,an } the set of agents involved in τ , moi
a message ordering interpretation and CM a communication model.
We say that τ is strongly (or weakly) enactable for moi semantics
in model CM if and only if the distribution of τ through projection
on its agents {a1,a2, · · · ,an } recognizes the same (or, respectively,
a subset of) traces recognized by τ . Formally:

enact(τ )CMmoi iff Jτ KCMdist = Jτ KCMmoi

weak_enact(τ )CMmoi iff Jτ KCMdist ⊆ Jτ KCMmoi
2For details, see the full version of this paper [11]
3A more detailed explanation can be found in: https://arxiv.org/abs/1902.01131.
4The projection retains only those aspects of the protocol that are relevant for the
agent.
5Each projection represents an autonomous behaviour for a single agent.
6The decision structure influences the interpretation of the choice operator.

The table below shows the results of applying this definition to
AIP1, with different message ordering interpretations, and different
communication models, from the strictest (CM1) to least strict
(CM6)7. This table, in which ✔and (✔) denote strongly and weakly
enactable respectively, has been automatically generated by our
prototype implementation in Haskell8.

The results in the table show that all of the four message ordering
interpretations can be implemented forAIP1, but some require quite
strict guarantees from the communication middleware (e.g. for RS
we need to have essentially synchronous communication). For this
protocol, where both messages are sent by the same agent, the
SS message ordering can be enforced with any communication
model. The SR moi shows where weak enactability is useful: in this
situation the distributed protocol cannot enforce exactly the desired
constraints of the global protocol, but it is possible to enforce stricter
constraints. For AIP1 and SR, the desired constraint is that Carol
receivesM2 after Alice sendsM1. The distributed protocol cannot
enforce this, but it can enforce the stronger constraint thatM2 is
sent (and therefore also received) after Alice sendsM1.

Alice
M1
=⇒ Bob · Alice

M2
=⇒ Carol

CM RS RR SS SR
CM1 (RSC) ✔ ✔ ✔ ✔
CM2 (FIFO n-n) ✘ ✔ ✔ (✔)
CM3 (FIFO 1-n) ✘ ✔ ✔ (✔)
CM4 (FIFO n-1) ✘ ✘ ✔ (✔)
CM5 (causal) ✘ ✘ ✔ (✔)
CM6 (fully async) ✘ ✘ ✔ (✔)

In the future, wewill address both theoretical and practical issues.
On the theoretical side, wewill carry out a systematic analysis of the
relationships between the communication model and the message
ordering interpretation, to identify those combinations that provide
some guarantees by design. We will also consider the relationship
between enactability and distributed monitorability [10], since the
two notions are related.

On the practical part, we plan to improve our working prototype
to provide a useful tool to assess protocols for enactability. Apart
from providing a user-friendly interface, a key issue to address will
be to provide a way to isolate the part of a non-enactable protocol
that makes it non-enactable. To stress-test the prototype and assess
its performance from a qualitative and quantitative viewpoint we
plan to create a library of interaction protocols known to be “prob-
lematic” w.r.t. enactability, and perform systematic experiments.

Finally, this work highlighted the need to characterise existing
agent infrastructures such as Jade [3], Jason [4] and Jadex [19] in
terms of the communication model they support. This would allow
us to state whether a protocol is enactable on a given infrastructure,
strengthening the potential of our proposal to be exploited in real
applications.
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7RSC = Realizable with Synchronous Communication: a send of a message can only be
followed (immediately) by receiving that message. FIFO n-n = messages are globally
ordered; FIFO 1-n = messages from a sender are received in the order they were sent.
FIFO n-1 = messages to a recipient are received in the order they were sent. Causal =
messages are delivered according to the causality of their emission.
8˜300 LOC, available on the web at: http://enactability.altervista.org/
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