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ABSTRACT
We propose a technique to compare partial strategies for agents and

coalitions in multi-agent environments with imperfect information.

The proposed relation mimics the game-theoretic notion of strate-

gic dominance: a stronger partial strategy can replace a weaker one

in a full strategy, while preserving the enforceability of a given goal.

Our version of dominance is based on a new notion of input/output

characteristics for partial strategies. Intuitively, the inputs are the

states where the strategy gains control over execution, and the out-

puts are the states where it returns the control to the environment.

Moreover, we identify the sources of dependence between partial

strategies, and show conditions under which they can be analysed

in a fully independent way. We evaluate our approach on two scal-

able benchmarks from the literature. The experiments are carried

out for the tasks of incremental synthesis of uniform strategies and

optimization of a winning strategy, with very promising results.
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1 INTRODUCTION
Most contemporary systems involve social as much as technological

aspects, and even those that focus on technology are often based on

autonomous components exhibiting self-interested, goal-directed

behavior. The field of multi-agent systems (MAS) studies the whole
spectrum of related phenomena. The theoretical foundations are

traditionally based on game theory and formal logic.

As the systems around us become more complex, and at the same

timemore autonomous, the need for unambiguous specification and

automated verification rapidly increases. Many relevant properties

of multi-agent systems refer to strategic abilities of agents and
their groups. Logics of strategic reasoning provide powerful tools to

reason about such aspects of MAS [3, 8, 35, 39]. A typical property

that can be expressed says that the group of agents A has a collective
strategy to enforce temporal property φ, no matter what the other
agents in the system do. In other words,A have a “winning strategy”

that achieves φ on all its possible execution paths. Specifications

in agent logics can be then used as input to model checking, which
makes it possible to verify the correct behavior of a multi-agent

system by an automatic tool [21, 22, 26, 31].
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Verification and reasoning about strategic abilities is difficult for

a number of reasons. The prohibitive complexity of model checking

and strategy synthesis is a well known factor [13, 24, 34]. This prob-

lem can be mediated to some degree by using efficient symbolic

methods and data structures [12, 17, 26, 38] that enable continuing

adoption of model checking in the analysis of real-life systems.

However, real-life agents typically have limited capabilities of ob-

servation, action, and reasoning. Thus, it is natural to assume that

an agent can only make decisions based on her internal state and

the observed part of the environment, i.e., under the conditions

of imperfect information. This in turn brings its own set of dif-

ficulties. Firstly, the theoretical complexity of model checking of

strategic properties in the setting of imperfect information ranges

from NP–complete through ∆P
2 to undecidable [27, 39], depending

on the precise setup of the problem. Secondly, it is known that there

is no fixed-point characterisation of typical properties of interest

under imperfect information [16, 23]. Hence, most approaches to

synthesis and verification boil down to checking all the possible

strategies [19, 32, 37]. Unfortunately, the strategy space is huge –

usually larger than the state space by orders of magnitude.

Some strategies are better than others. Clearly a strategy that

“wins” on all paths is better than one that does not. In game-theoretic

terms: the former dominates the latter. Among ones that achieve

the goal, possible criteria of domination include: readability, cost-

efficiency with respect to given resources, complexity of the strat-

egy, and its robustness (how well it might handle small perturba-

tions in the model). Here, we propose and study another criterion

that refers to tightness of the strategy. Intuitively, those strategies
are better which have a tighter control on the system dynamics.

Technically, this is defined by introducing a new concept of

input/output characteristic of a (partial) strategy. Intuitively, the
inputs of a strategy consist of all the states where the strategy is

granted the full control over the execution of the system. To each

of these entry points we assign the set of states where the strategy

returns the control to the environment, i.e., the outputs. When

treating strategies as black boxes a new strategy is better than the

original one if it assigns smaller outputs to the same inputs. While

the notion of dominance based on the comparison of input/output

characteristics is sound, i.e., a dominating strategy can achieve at

least what the dominated one can, it does not necessarily lead to

simpler strategies. We thus combine the theoretical concept with

heuristics geared towards simplicity of strategies.

We propose two practical algorithmic applications of the pre-

sented theory. Firstly, we design and evaluate an on-the-fly model

checking algorithm that tries to synthesise a winning strategy. The

main routine is based on depth-first search and synthesis, start-

ing from the initial state. The novelty of the approach consists in

elimination of dominated partial strategies that are candidates for

including in the final result. This substantially reduces the search

space. Secondly, we utilise a similar methodology in performing
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optimization of a winning strategy, given as an input together with

a model. The optimization is performed w.r.t. a threshold quality

condition and heuristic preorders on partial strategies.

Related Work. To our best knowledge, both the theoretical pro-

posal in this paper (a notion of strategy dominance based on tight-

ness of the outcome set) and its practical application (an algorithm

for dominance-based strategy synthesis for imperfect information)

are entirely new. Below, we list the works that have partly overlap-

ping concerns, albeit addressed in a completely different way.

The complexity, quality, and the number of winning strate-

gies have been the subject of much research. Among these, cost-

efficiency was considered in [1, 2, 14, 15] for strategic properties

of agents with bounded resources. Permisiveness of strategies in

parity games was addressed in [7, 9]. Moreover, [33] dealt with the

existence of multiple winning Nash equilibrium strategies.

Readability of strategies and simplicity of their representations

based on BDDs have been studied in [10, 11]. A practical framework

presented in [36] allows for incremental automata-based learning

of small strategies. Small (i.e., based on regular languages) strategies

were also addressed in [30]. In [6], a method for synthesising solu-

tions of Quantified Constraint Satisfaction Problems that attempts

to find most preferred ones was presented.

Last but not least, several frameworks have targeted the verifica-

tion of strategic properties under imperfect information. Regarding

the available tools, the state-of-the-art MAS model checker MC-

MAS [32] combines efficient symbolic representation of state-space

using Binary Decision Diagrams (BDDs) with exhaustive itera-

tion over uniform strategies. A prototype tool SMC [37] employs

bounded unfoldings of transition relation with strategy exploration

and calls to MCMAS. A similar approach based on maximisation of

partial strategies towards building a winning strategy is presented

in [18–20]. Another prototype tool [29] avoids the brute-force strat-

egy search by using fixed-point approximations of the input for-

mulas. It should be noted, however, that the approximations do

not always provide conclusive results. Finally, papers [4, 5] provide

abstraction and bisimulation-based methods for simplifying models

with incomplete knowledge.

2 PRELIMINARIES
We first recall the basic formal models of MAS, and provide a notion

of partial strategy.

Models. Imperfect Information Concurrent Game Structure or iCGS
[3, 39] is a tuple M = ⟨Agt, St ,qinit ,P,V ,Act ,d, o, {∼a | a ∈ Agt}⟩
which includes a nonempty finite set of all agents Agt = {1, . . . ,k},
a nonempty set of states St , the initial state qinit ∈ St , a set of

atomic propositions P and their valuation V : P → 2
St
, and a

nonempty finite set of (atomic) actions Act . The protocol function
d : Agt × St → 2

Act
defines nonempty sets of actions available to

agents at each state; we write da (q) instead of d(a,q), and define

dA(q) =
∏

a∈A da (q) for each A ⊆ Agt,q ∈ St . Furthermore, o
is a (deterministic) transition function that assigns the outcome

state q′ = o(q,α1, . . . ,αk ) to each state q and tuple of actions

⟨α1, . . . ,αk ⟩ such that αi ∈ d(i,q) for i = 1, . . . ,k .
Every ∼a⊆ St × St is an epistemic equivalence relation with the

intended meaning that, whenever q ∼a q′, the states q and q′ are

indistinguishable to agent a. The iCGS is assumed to be uniform,

in the sense that q ∼a q′ implies da (q) = da (q
′). We also define

∼A=
⋃
a∈A ∼a . The transitive closure of ∼A is denoted by ∼CA , and

corresponds to common knowledge [25] .

Strategies. A strategy of agent a ∈ Agt is a conditional plan that

specifies what a is going to do in every possible situation. In this

paper, we consider imperfect information memoryless strategies [39].
Formally, a strategy for a is a function σ̂a : St → Act with σ̂a (q) ∈
da (q) for each q ∈ St and σ̂a (q) = σ̂a (q

′) for each q,q′ ∈ St such
that q ∼a q′. A collective strategy σ̂A for coalition A ⊆ Agt is a
tuple of individual strategies, one per agent in A.

Partial strategies. A partial strategy for a is a partial function

σa : St ⇀ Act that can be extended to a strategy. The domain

of a partial strategy is denoted by dom(σa ). The set of all partial
strategies for A ⊆ Agt is denoted by ΣA.

Let q ∈ dom(σA) for some σA ∈ ΣA. The outcome of σA from q
consists of all the maximal paths λ ∈ dom(σA)

∗ ∪ dom(σA)
ω
that

follow the partial strategy. Formally we have:

λ ∈ out(q,σA) iff λ1 = q ∧ ∀i≤ |λ |λi ∈dom(σA)

∧ ∀i< |λ |∃β ∈dAgt\A(λi )o(λi , (σA(λi ), β)) = λi+1

where |λ | denotes the length (i.e., the number of states) of λ and λ is

either infinite (i.e., |λ | = ∞) or cannot be extended in out(q,σA). For
each i ∈ N λi is the i–th element in λ and supp(λ) is the set of all
elements of λ. Moreover, supp(out(q,σA)) =

⋃
λ∈out(q,σA) supp(λ).

Let Q ⊆ dom(σA). A partial strategy σA is Q-loopless, if the set⋃
q∈Q out(q,σA) contains only finite paths. For each p ∈ P we say

that σA is p-free if V (p) ∩ dom(σA) = ∅.

Finally, we define the border of σA as the set of states where the

partial strategy induces some choices due to uniformity:

bord(σA)= {q ∈ St \dom(σA) | ∃a∈A∃q′∈dom(σA) q
′∼a q}.

In what follows we often refer to partial strategies simply as

strategies and assume a fixed iCGS and A ⊆ Agt.

3 COMPARING PARTIAL STRATEGIES
In game theory, iterative removal of dominated strategies is a basic

method for reducing the space of strategy profiles relevant to so-

lution concepts such as Nash equilibrium. Briefly, if one strategy

leads to smaller payoffs than another one, then the former can be

omitted in the analysis.

In our formal setting we focus on the property of enforceability.
We say that p ∈ P is enforceable from the state q ∈ St by a coalition
A ⊆ Agt using strategy σA ∈ ΣA if for each λ ∈ out(q,σA) there
exists i ∈ N satisfying λi ∈ V (p). This is denoted by q |= ⟨σA⟩Fp.
We write q |= ⟨⟨A⟩⟩Fp if such a strategy exists. Instead of compar-

ing and removing full strategies, we compose a possibly winning

strategy from partial strategies. Moreover, we propose a procedure

that simplifies winning strategies by substituting their parts.

We say that two partial strategies σA,σ
′
A ∈ ΣA are conflictless

iff dom(σA) ∩ dom(σ ′
A) = ∅ and σA ∪ σ ′

A is a partial strategy. In

order to analyse the interplay between two partial strategies we

introduce the following notions.

Definition 3.1. Let σA,σ ′
A ∈ ΣA be conflictless partial strategies.

We will use the following notation:
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• O(σA) = {q′ ∈ St \ dom(σA) | ∃q∈dom(σA)∃β ∈dAgt\A(q)
o(q, (σA(q), β)) = q′}, called the set of exits of σA, consisting
of all the states outside of the domain that can be reached

by executing the strategy.

• SC(σA,σ
′
A) = {q ∈ bord(σA) ∪ bord(σ ′

A) | ∀a∈A∃q′∈dom(σA)∪dom(σ ′
A)
q ∼a q′}, called the set of shared control

of both the strategies.

• ∆(σA,σ
′
A) =

{
(q,α) |q ∈ SC(σA,σ

′
A) and α ∈ dA(q)

is induced by σA and σ ′
A
}
called the induced shared-control

strategy.
• σA ∪· σ ′

A = σA ∪ σ ′
A ∪ ∆(σA,σ

′
A) and Λ(σA,σ

′
A) = σA ∪

∆(σA,σ
′
A) that complement σA ∪σ ′

A (σA, resp.) with shared-

control strategy.

• I(σA,σ
′
A) = (O(σ ′

A) ∩ dom(Λ(σA,σ
′
A)))∪q

e
init , called the set

of inputs of σ ′
A into σA, where qeinit = {qinit } if qinit ∈

dom(σA) and q
e
init = ∅ otherwise. Intuitively, I(σA,σ

′
A) con-

tains all the states that are (1) in the domain of σA (2) or

jointly controlled by σA and σ ′
A but not in the domain of σ ′

A
(3) and s.t. they can be reached by executing σ ′

A. For techni-

cal convenience, the initial state is added to the inputs into

σA, if it is present in its domain.

Observe that a coalition A ⊆ Agt can enforce p from a state q iff

it has a strategy that covers q and allows for avoiding loops along

each of its executions, at least until p is reached. We thus have the

following result.

Proposition 3.2. We have q |= ⟨⟨A⟩⟩Fp iff there exists a p-free
partial strategyσA ∈ ΣA that isq-loopless and such thatq ∈ dom(σA)
and O(σA) ⊆ V (p).

3.1 Substituting Strategies
In the rest of this section we aim to formalise the following in-

tuition. Let us assume that two conflictless partial strategies σCA
and σA control the executions of the system. The joint domain of

the strategies is known and the goals that we want to enforce lie

outside. For simplicity, let the borders of both strategies be empty.

We can list the inputs of σCA into σA defined as the states reachable

by following σCA and controlled by σA. To each of these inputs we

can assign the set of outputs, i.e., the states encountered immedi-

ately when leaving the domain of σA, after starting from a given

input. This assignment is called input/output characteristic of σA
w.r.t. σCA . Recall that the goal is jointly enforced by σCA and σA if it

is reached by every path that leaves the sum of domains of these

strategies. Under this assumption (and other conditions introduced

in what follows) we can observe that a partial strategy σ ′
A that

shares the same set of inputs with σA and offers a finer control over

the outputs can be substituted for σA, when considered w.r.t. σCA .

Definition 3.3 (Input/Output Characteristic). Let σA,σCA ∈ ΣA be

conflictless. The input/output characteristic of σA w.r.t. σCA is defined

as a function IO(σA,σ
C
A ) : I(σA,σ

C
A ) → 2

O(Λ(σA,σCA ))
such that

for each q ∈ I(σA,σ
C
A ) we have IO(σA,σ

C
A )(q) = O(Λ(σA,σ

C
A )) ∩

supp(out(q,Λ(σA,σCA ))).

The idea is as follows. For simplicity, let us assume thatΛ(σA,σ
C
A ) =

σA, i.e.,σA,σ
C
A do not share control over any state. Then,O(Λ(σA,σ

C
A ))

qinitstart

q2 q1

q4

p

q3

p

q5

?

(C,U )

(B,⋆)

(C,V )

(C,V )

(C,U )

(B,⋆) (B,⋆)

(C,U )

(C,V )

1

Figure 1: Example iCGS

contains the states that can be reached by executing σA and are out-

side of the domain of the strategy.Moreover, supp(out(q,Λ(σA,σCA )))

contains the states of the paths resulting from executing σA from

q. Thus, IO(σA,σ
C
A )(q) contains the states that can be reached

by executing σA from q right after leaving the domain of σA. The
following example illustrates the definition.

Example 3.4. Fig. 1 presents an iCGS with six states and two

agents. The solid edges denote temporal transitions, and are labeled

with pairs of actions selected by the respective agents. The⋆ symbol

indicates that the choice is irrelevant. The dotted line connects

states indistinguishable to agent 1.

In state qinit , agent 1 can either choose to move to q2 by playing

B or let the other agent make the choice between q1 and q2. Note
that the states q1 and q2 are indistinguishable to agent 1. In {q1,q2}
agent 1 can either fix C or B for both the states in his strategies. In

the first case, the second agent can respond by playingU orV , which

takes the system to either q3 or q4 (when moving from q2) or to q4
or q5 (when moving from q1). In the second case, irrespectively of

the choice of the second player the system moves to q4. Proposition
p holds in states q3 and q4. We will fix the labeling of q5 later.

Let us consider the singleton coalition A = {1} and three par-

tial strategies σCA , σA, and σ ′
A, satisfying dom(σCA ) = {qinit } and

dom(σA) = dom(σ ′
A) = {q2}. Let σ

C
A (qinit ) = C , σA(q2) = B,

and σ ′
A(q2) = C . Observe that O(σCA ) = {q1,q2} and we have

Λ(σA,σ
C
A )(qi ) = B, for i ∈ {1, 2} and Λ(σ ′

A,σ
C
A )(qi ) = C . We thus

have I(σ ′
A,σ

C
A ) = I(σA,σ

C
A ) = {q1,q2}. Moreover, we also have

IO(σA,σ
C
A )(q1) = IO(σA,σ

C
A )(q2) = {q4}, andIO(σ ′

A,σ
C
A )(q1) =

{q4,q5} and IO(σ ′
A,σ

C
A )(q2) = {q3,q4}.

We now provide a method for comparing partial strategies in the

presence of a context, based on their input/output characteristics.

Definition 3.5 (Comparing Partial Strategies). Let σA,σ ′
A,σ

C
A ∈

ΣA be s.t. the pairs σA, σ
C
A and σ ′

A, σ
C
A are conflictless. We call

σCA the context strategy. We write σ ′
A ≼σCA

σA iff the following

conditions are satisfied:

Session 1D: Verification and Validation AAMAS 2019, May 13-17, 2019, Montréal, Canada

199



(1) dom(IO(σA,σ
C
A )) = dom(IO(σ ′

A,σ
C
A )), i.e., both the partial

strategies σA and σ ′
A control the same set of inputs from the

context; and

(2) for each q ∈ dom(IO(σA,σ
C
A )) we have IO(σA,σ

C
A )(q) ⊆

IO(σ ′
A,σ

C
A )(q), i.e., σA leads the inputs to exits of σ ′

A.

When the context σCA is fixed, relation ≼σCA
is a preorder on par-

tial strategies conflictless with σCA . While the strict antisymmetry

does not hold in general, observe that σ ′
A ≼σCA

σA and σA ≼σCA
σ ′
A

imply together that IO(σA,σ
C
A ) = IO(σ ′

A,σ
C
A ).

We now remove the need to specify the context.

Definition 3.6 (Comparison Relation ≼). Define

ΓA =
{
{σA,σ

C
A } ⊆ ΣA | σA,σ

C
A are conflictless, Λ(σA,σ

C
A ) is p-free

and I(σA,σ
C
A )-loopless and qinit ∈ dom(σA) ∪ dom(σCA )

}
.

The elements of ΓA are called strategic coverings.
Now, let γA,γ

′
A ∈ ΓA be such that γA = {σA,σ

C
A } and γ ′A =

{σ ′
A,σ

C
A }. We write γA ≼0 γ ′A iff σ ′

A ≼σCA
σA. The relation ≼ is

defined as the reflexive and transitive closure of ≼0.

Note that this relation is also a preorder. A further extension to

arbitrary tuples of strategies, instead of pairs, is straightforward,

and we omit it for the sake of simplicity.

So far we have introduced notions that allow for comparing

strategic coverings. We can now show that the relation of com-

parison indeed preserves enforceability, which is one of the main

contributions in this paper. Intuitively, a stronger strategy (w.r.t. ≼)

can achieve at least what the weaker one can. For brevity, we write⋃
· γA = σCA ∪· σA for each γA = {σA,σ

C
A } ∈ ΓA.

Theorem 3.7 (On Substituting Strategies). Let γA,γ ′A ∈ ΓA
be such that γ ′A ≼ γA. If qinit |= ⟨

⋃
· γ ′A⟩Fp, then also qinit |=

⟨
⋃
· γA⟩Fp.

Proof sketch. Let γ ′A = {σ ′
A,σ

C
A }, γA = {σA,σ

C
A }, and σ ′

A ≼σCA
σA. Assume that qinit |= ⟨σCA ∪· σ ′

A⟩Fp and σ ′
A ≼σCA

σA. If qinit ∈

dom(σCA ), then a path following

⋃
· γ ′A from qinit cannot loop before

reaching p or leaving dom(σCA ) without visiting a state labeled with

p. In the latter case Λ(σ ′
A,σ

C
A ) takes charge and leads the path from

one of its inputs to its exits (there is no other possibility due to

its looplessness and p-freeness). Now, it suffices to observe that

Λ(σA,σ
C
A ) performs exactly the same type of transfer between its

inputs and exits. The detailed proof and case of qinit ∈ dom(σ ′
A) is

omitted due to lack of space. �

Let us illustrate the theorem with an example.

Example 3.8. Take the scenario in Example 3.4 and Fig. 1. Ad-

ditionally, let σ ′C
A ∈ ΣA be such that dom(σ ′C

A) = {qinit } and

σ ′C (qinit ) = B. Observe that {σCA ,σ
′
A} ≼ {σCA ,σA}, as from Ex-

ample 3.4 we have σ ′
A ≼σCA

σA. Moreover, it can be calculated

that σCA ≼σA σ ′C
A , hence {σ

C
A ,σA} ≼ {σ ′C

A,σA}. Finally, we have

{σCA ,σ
′
A} ≼ {σ ′C

A,σA}. Note that the leftmost pair of strategies for

agent 1 corresponds to always executing action C , while the right-
most one corresponds to always executing B. The latter is naturally

q0start

q2 q1

q⊥

q11 q13 q21 q22 q23

q⊤

yes

b1 b2

bF

bS

r : 1 r : 2

v : F v : F

v : 1 v : 3 v : 1 v : 2 v : 3

v : ⊤
v : ⊥ v : ⊥ v : ⊤ v : ⊤

r : 1

r : 2

v : Bv : B

Figure 2:M ′
ϕ for ϕ ≡ (x1∨¬x3)∧(¬x1∨x2∨x3). The transitions

(q11,v : ⊥,q⊥), (q13,v : ⊤,q⊥), (q21,v : ⊤,q⊥), (q22,v : ⊥,q⊥),
and (q23,v : ⊥,q⊥) are omitted for clarity.

stronger, as it is able to enforce p from qinit , even if q5 is not labeled
with p.

In Section 4, we will provide a practical justification for The-

orem 3.7 by proposing an algorithm for on-the-fly synthesis of

strategies.

3.2 Complexity
We now tackle the complexity of deciding whether a given strategy

is optimal. We write σ1 ≺σCA
σ2 if σ1 ≼σCA

σ2 but not σ2 ≼σCA
σ1. A

strategy σ1 is optimal w.r.t. a context σC if there is no strategy σ2
s.t. σ1 ≺σCA

σ2.

Theorem 3.9. Deciding whether a partial strategy is optimal w.r.t.
a given context and iCGS is co-NP-complete.

Proof sketch. We focus on the complement problem, i.e., the

question if a strategy σ1 can be improved w.r.t. a context σC over

iCGS M. It is not difficult to see that this problem is in NP, as we
can guess a strategy σ2, and test in polynomial time if it is uniform,

conflictless with σC , and whether σ1 ≺σCA
σ2.

To show the NP-hardness, we modify the reduction from SAT

to enforceability in [27]. There, it is shown how to construct, for

any boolean formula ϕ, an iCGSMϕ modeling a turn-based game

between the refuter (r) and the verifier (v). The verifier proposes
a strategy that enforces yes in Mϕ iff ϕ is satisfiable. In the first

phase of the game, the refuter points to a clause of ϕ. Then, the
verifier’s strategy is executed by pointing to a literal in the selected
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clause and choosing a valuation of the corresponding variable. The

indistinguishability relation for v is used to ensure that the choice

of valuations is made consistently.

We extend Mϕ with a gadget to obtain M ′
ϕ . Let S denote the

set of all states ofM ′
ϕ . We present the construction in Fig.2 on the

case of ϕ ≡ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3); the blue states originate
from Mϕ while the green ones belong to the gadget. Firstly, we

add a set of states G = {bi }i ∈clauses(ϕ), one per each clause of

ϕ. These states are indistinguishable for the verifier and visited

just after the refuter’s choice of a clause. Then, the verifier can

make a decision of whether to continue (F) following the refuter’s

choice, or break (B), moving to the new state bF . The latter is

controlled by the refuter who can select to move to the final state

q⊤ labeled with yes or the sink state bS . Now, let us fix for the

verifier the empty context strategy σC = ∅ and consider a strategy

σ1 with dom(σ1) = S \ {q⊤,q⊥,bS } and such that σ1(b) = B for

all b ∈ G. Note that I(σA,σ
′
A) = {q0}, as q0 is the initial state of

M ′
ϕ . Intuitively, in σ1 the verifier decides to break, after which the

refuter can choose to move to either q⊤ or bS ; the verifier’s choices
in the remaining states do not influence the outcomes. We thus

have IO(σ1,σ
C )(b) = {q⊤,bS } for all b ∈ G = I(σ1,σ

C ).

It now suffices to observe that any strategy σ2 that improves

σ1 needs to make a choice of action F in the states of G and then

enforce q⊤ along each path, i.e., enforce yes from the initial state.

Therefore, σ1 is improvable w.r.t. σC iff yes is enforceable. �

3.3 On Independence of Components
In this subsection we lay ground for parallelization of strategy syn-

thesis, that can be explored in the future. Namely, we identify cer-

tain conditions under which a strategic covering γA = {σ 0

A,σ
1

A} can

be sent to two independent processes such that: (1) each Process i ,

where i ∈ {0, 1}, computes a maximal strategy σm,i
A dominating σ iA

w.r.t. the context σ
i+1(mod2)
A ; (2) the covering γmA = {σm,1

A ,σm,2
A }

dominates γA.
Recall that in a preorder ❁ an element e is maximal iff for all e ′

s.t. e ❁ e ′ we also have e ′ ❁ e . In Example 3.8 we have identified a

pair of strategies maximal w.r.t. relation ≼ in iCGS of Fig. 1, namely

{σA,σ
′C
A}. We also say that a strategy σA ∈ ΣA is σCA -independent

if there are no states q ∈ dom(Λ(σA,σ
C
A )), q′ ∈ dom(σCA ), and agent

a ∈ A such that q ∼a q′.
The meaning of the following lemma is that a change of the

context strategy does not affect the relation between two strategies

if the context stays epistemically independent from them and does

not produce new entry points.

Lemma 3.10 (On Shrinking Contexts). Let σA,σ ′
A,σ

C
A ,σ

Cm
A ∈

ΣA be such strategies that σA and σ ′
A are σCA - and σCmA -independent.

If O(σCmA ) ⊆ O(σCA ) and σ ′
A ≼σCA

σA, then also σ ′
A ≼σCmA

σA.

Proof sketch. Observe that σ ′
A ≼σCA

σA requires I(σ ′
A,σ

C
A ) =

I(σA,σ
C
A ). This, together with σCA - and σCmA -independence of σA

and σ ′
A yields I(σ ′

A,σ
Cm
A ) = I(σ ′

A,σ
C
A ) ∩ O(σCmA ) = I(σA,σ

C
A ) ∩

O(σCmA ) = I(σA,σ
Cm
A ). As IO(σA,σ

Cm
A ) and IO(σ ′

A,σ
Cm
A ) are

restrictions of IO(σA,σ
C
A ) and IO(σ ′

A,σ
C
A ), resp., to a common

domain, and σ ′
A ≼σCA

σA, we obtain σ ′
A ≼σCmA

σA. �

As a particular case we can apply Lemma 3.10 to strategies de-

fined on classes of the relation of common knowledge ofA. Namely,

it suffices to observe that for each σA,σ
C
A ∈ ΣA if [dom(σA)]∼CA

∩

[dom(σCA )]∼CA
= ∅, then σA is σCA -independent and vice versa. This

suggests a natural initial partitioning scheme, where partial strate-

gies are defined on the abstraction classes of ∼CA . We note in passing

the analogy to some existing model equivalences and approxima-

tion schemes for ATLir [4, 28].
The next theorem points to some sources of conflict between

two strategies, leading to a natural observation that a strategy can

be safely replaced with a stronger one, if the observed change is

not visible outside of its domain.

Theorem 3.11 (Component-wise Comparison). Let γA,γmA ∈

ΓA be s.t.γA = {σA,σ
C
A } andγmA = {σmA ,σ

Cm
A }. If both the conditions

hold:
C1 σA ≼σCA

σmA and {σmA ,σ
C
A } ∈ ΓA and O(σmA ) ⊆ O(σA),

C2 σCA ≼σA σCmA and {σA,σ
Cm
A } ∈ ΓA and σCA ,σ

Cm
A

are σA,σmA -independent,
then γA ≼ γmA .

Proof. As σA ≼σCA
σmA , it follows from the definition of ≼ that

{σA,σ
C
A } ≼ {σmA ,σ

C
A }. Now, from Lemma 3.10 applied to σCA ≼σA

σCmA under combined conditionsC1 andC2we haveσCA ≼σmA
σCmA ,

hence {σmA ,σ
C
A } ≼ {σmA ,σ

Cm
A }. We obtain γA ≼ γmA from the

transitivity of ≼. �

This result suggests a possible optimization of our method, that

we plan to explore in future work.

4 EVALUATION
In this section we show how to apply the concept of strategic

dominance to two tasks: model checking of enforceability and op-

timization of an existing strategy. We evaluate our framework on

several scalable benchmarks.

4.1 Setup of the Experiments
The dominance-based algorithms have been implemented in Python

3. We use non-symbolic representations, i.e., the models are stored

in memory explicitly, as transition graphs. We compare our new

algorithms to the output of three existing tools: the state of the art

tool MCMAS [31], an experimental model checker SMC [37], and a

prototype implementation (in C++) of the fixpoint approximation

algorithms of [29]. All the tests have been conducted on a laptop

with an Intel Core i7-6700HQ CPU with dynamic clock speed of

2.60 GHz up to 3.50 GHz, 32 GB RAM, and 64bit Linux. The running

times are given in seconds; the timeout was 4h.

Heuristics. While comparing the input/output characteristics

provides a sufficient condition for preserving goal-enforceability,

in practice simple plans are usually preferable. Informally, a plan

is simpler than another if it is easier to remember and execute. To

reflect this, we define heuristic preorders on strategies that express

different kinds of domain-specific relationships. E.g., a strategy

σA can be seen as simpler than σ ′
A if it utilises less actions, its

branching factor is smaller, more nodes are fully controlled by A,
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Algorithm 1 DominoDFS(σA, p, ≼H)

Input: σA - a p-free and initial state-loopless partial strategy for A,
proposition p, and heuristic preorder ≼H

Output: an extension of σA that enforces p from the initial state

qinit or ∅ is there is none

1: if σA = ∅ then
2: nxtstate = qinit {Initialisation}
3: else if exists x ∈ O(σA) s.t. x < V (p) then
4: nxtstate = x {σA is not winning and extension is possible}

5: else
6: return σA {σA is a winning strategy}

7: end if
8:

9: candactions = dA(nxtstate)
10: candactions.removeDominatedStrategies(context = σA)
11: candactions.removeLoops(baseStrategy = σA)
12: if candactions = ∅ then
13: return ∅ {No winning extension of σA possible}

14: end if
15: candactions.heuristicOrdering(≼H)

16:

17: for each actn ∈ candactions do
18: solution = DominoDFS(σA ∪ {(nxtstate, actn)}, p, ≼H)

19: if solution , ∅ then
20: return solution
21: end if
22: end for
23:

24: return ∅ {No winning extension of σA possible}

etc. We denote such preorders on ΣA by ≼H and assume that they

are extended to ΓA in a natural way.

In what follows, we use three different approaches. The first

one, called the Simple Reduction, is based only on the preorder ≼.

The second one, called the Epistemic Heuristic, employs a heuristic

preorder that compares the size of the sets of exits of two partial

strategies (including indistinguishable states); the better one con-

tains less states. The third one, the Control Heuristic, deems one

partial strategy better than another if its exits contain less non-

controlled states. Intuitively, a state q is controlled by coalition A if

A fully controls the next transition. Formally, q is controlled by A iff

dAgt\A(q) is a singleton.

4.2 Depth-First Strategy Search: DominoDFS
Our main procedure for dominance-based strategy synthesis is

presented in Algorithm 1. The goal of the algorithm is to synthesise

a strategy that enforces p and extends σA from the initial state of

the model. Additionally, the algorithm uses a heuristic preorder

≼H . As previously, the model is implicit and omitted for clarity.

The requirements on the input strategyσA given in the algorithm

are also its invariant. Lines 1–7 establish whether it is possible to

find a state nxtstate that is present in any extension of σA. If not,
then by the assumption on σA and Proposition 3.2 the strategy is

winning and is returned. Otherwise, the allowed single-step actions

forA in the state nxtstate are collected in the list candactions (Line 9).

Conf. DominoDFS MCMAS Approx. Approx. opt.

(1, 1) 0.0006 0.12 0.0008 < 0.0001

(2, 2) 0.01 8712
∗

0.01 < 0.0001

(3, 3) 0.8 timeout 0.8 0.06

(4, 4) 160 timeout 384 5.5

(5, 5)∗ 1373 timeout 8951 39

(5, 5) memout timeout memout 138

(6, 6)∗ memout timeout memout 4524

Table 1: Results for Bridge

Conf. DominoDFS MCMAS SMC

(1, 1, 1) 0.3 65 63

(2, 1, 1) 1.5 12898 184

(3, 1, 1) 25 timeout 6731

(2, 2, 1) 25 timeout 4923

(2, 2, 2) 160 timeout timeout

(3, 2, 2) 2688 timeout timeout

(3, 3, 2) timeout timeout timeout

Table 2: Results for Castles

Then, the list is pruned by removing all the single-step actions

dominated w.r.t. the context σA (Line 10) and those that induce

loops when added to σA (Line 11). If no action is left in candactions,
then it is not possible to build a winning strategy based on σA.
Otherwise the list candactions is ordered to respect ≼H (Line 15);

note that if the heuristic preorder is a total order then this step boils

down to simply sorting w.r.t. ≼H . The algorithm is then recursively

called on all the candidate extensions of σA (Line 20) until a solution

is found or no candidates are left (Line 24).

4.2.1 First Benchmark: Bridge Endplay [29]. We use a Bridge

play scenario of a type often considered in bridge handbooks and

magazines. There are four players, depicted by the four sides of the

world. The task is to find a winning strategy for the declarer located

at the South position, in the k-endplay of the game. The deck con-

sists of 4n cards in total (n in each suit), and the initial state captures

each player holding k cards in their hand, after having played n −k
cards. This way we obtain a family of models, parameterized by

the possible values of (n,k). A NoTrump contract is being played;

the declarer wins if she takes more than k/2 tricks in the endplay.

The verified property ϕ
Bridge

≡ ⟨⟨S⟩⟩Fwin asks if the declarer has a

strategy to collecting more tricks than the enemy team.

4.2.2 Second Benchmark: Castles [37]. The model describes a

scenario of war between three castles. Each castle has a certain

amount of health points and a number of worker agents. Each

worker is employed by a single castle and performs one of the

four actions: defend the castle, attack one of the other castles or

wait. The agents must rest after defending a castle, so they cannot

perform the defend action twice in a row. The goal of the game

is to defeat the other castles. A castle is defeated when its health

points drop to or below zero. The health decreases during a battle

if the number of attackers is greater than the number of defenders,

and the damage is equal to the difference. We verify the formula
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Algorithm 2 SimplifyStrat(γA, ≼H , µ)

Input: γA ∈ ΓA, heuristic preorder ≼H , and quality condition µ
Output: γmA ∈ ΓA satisfying γA(≼ ∩ ≼H)γmA and µ(γmA )

1: for each π ∈ Sym(γA) do
2: for each 1 ≤ i ≤ |π | do
3: σmA,i :=SingleMax(πi ,

⋃
j,i πj , ≼H)

4: Update πi := σmA,i
5: end for
6: if µ(π ) then
7: return π
8: end if
9: end for

ϕ
Castles

≡ ⟨⟨c12⟩⟩F castle3Defeated, i.e., whether the coalition of the

workers from castles 1 and 2 can defeat the third castle.

4.2.3 Experimental Results and Discussion. Table 1 collects the
experimental results for models of the Bridge scenario. The first

column identifies a subclass of the models. For each such subclass,

we have run tests on 50 randomly generated card deals, except for

the configurations marked with (*) where we were only able to run

tests on a single handcrafted instance of the model due to timeout

or memout. The other columns present the average performance of

model checking (model generation + verification time): first for our

new algorithm (DominoDFS), and then for the reference tools. Due

to limitations of SMC, we have not been able to properly encode the

benchmarks in that tool, hence we only provide a comparison to

MCMAS and the fixed-point approximations. The approximations

are used in two variants: the basic one (Approx.) and the optimized

one (Approx. opt.), cf. [29] for details.

Table 2 collects the experimental results for Castles. Each triple in

the Configuration column refers to the number of workers assigned

to the corresponding castles. The initial amount of health points

for each castle is 3. All the remaining details are as in Table 1.

Since the benchmark does not fulfil the necessary condition for

fixpoint approximation [29], we only compare the performance of

the dominance-based synthesis to MCMAS and SMC. The times

are given in seconds, and the timeout is 4 hours.

The results show that DominoDFS significantly outperforms

MCMAS and SMC. It also successfully competes with the basic

implementation of fixpoint approximation. We also note that our

new approach can handle models that do not submit to the fixpoint

approximation scheme. This allows us to suggest the following

mete-procedure for verification of enforceability in models with

incomplete information: first try optimized fixed-point approxima-

tions, if this fails then apply DominoDFS, finally try your luck with

remaining tools.

Somewhat surprisingly, none of the heuristics have performed

notably better or worse than the simple reduction, hence we omit

their performance from the tables.

4.3 Strategy Optimization
In this section we provide an evaluation of our approach applied

to optimization of an input strategy. The idea is to start with a win-

ning strategy and consecutively reduce it until it meets additional
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Figure 3: Basic Strategy (Single Drone)

requirements on simplicity. To this end, we assume the existence

of a predicate µ s.t. µ(γmA ) holds if the strategic covering γmA is of

acceptable quality.

Moreover, for each γA ∈ ΓA, let Sym(γA) denote the set of all
permutations of components in γA. Note that strategic coverings in
this section consist of arbitrary amounts of elements. For each π ∈

Sym(γA) and 1 ≤ i ≤ |Sym(γA)|, let πi denote its i–th component.

With a slight abuse of notation, we sometimes treat a permutation

as a writable vector of the components.

The strategy optimization procedure is presented in Algorithm 2.

The goal is to simplify the input strategic covering γA ∈ ΓA w.r.t.

a preorder heuristic ≼H and a quality condition µ. The algorithm
selects a permutation π ∈ Sym(γA) andmaximises it component-by-

component. An auxiliary procedure SingleMax(σ ′
A,σ

C
A , ≼H) re-

turns amaximal strategyσmA satisfying {σ ′
A,σ

C
A } ≼∩≼H {σmA ,σ

C
A },

for each σ ′
A,σ

C
A ∈ ΣA. Note that this choice is nondeterministic; a

more exhaustive version iterates over all such maximal strategies.

Then, a new tuple of strategies ρ is tested and returned if it meets

the criteria of µ.
We note in passing that each run of the outer loop 1–9 is inde-

pendent, hence parallelizable. The runs of the inner loop 2–5 can

be executed concurrently if the conditions of Theorem 3.11 hold.

This suggests a possible improvement of the implementation by

parallel execution, that we plan to explore in the future.

4.3.1 Benchmark: Drone-Control Model. We evaluate the algo-

rithm onmodels of a team of drones equippedwith an initial number

of energy points, inspecting a fixed, two-dimensional map. Each

action of a drone consumes an energy point. Once the energy level

reaches zero, the drone becomes useless. The limited precision of

the drone’s telemetry is modeled by making selected locations in-

distinguishable. The drone can attempt to fly in one of the four

directions (NESW) unless there is an obstacle. It can also wait,

staying in the current place. In some locations, the outcome of its

actions can be influenced by the wind that alters the direction of

the movement. The states that contain those locations are called

non-controlled. The action of waiting is thus active: a drone stays in

its current location, opposing the wind. It can also decide to drift

with the wind, executing the action Fly.

4.3.2 Experimental Results and Discussion. We consider two sub-

classes of the drone benchmark: one with a single drone, and one

with two drones inspecting the same map. The model is scalable
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w.r.t. the number of initial energy points. The basic strategy to be op-

timized is always the same: drift with the wind (if detected) or wait,

being passively moved by the environment until the battery runs

out. The characteristics of the basic strategy is presented in Fig. 3.

The boxed line shows the number of reachable states, i.e., the states
that must be taken into account when the strategy is executed (in-

cluding the states reachable by epistemic indistinguishability links).

The diamond line indicates the number of reachable uncontrollable
states, i.e., reachable states where the wind is present.

The experimental results for the single-drone model scaled w.r.t.

the energy points of the drone are presented in Fig. 4. As it can

be observed, the simple approach allows for substantial reductions

of the basic strategy, leading to 50%–75% smaller sets of outcome

states. Rather surprisingly, the epistemic heuristic leads to smaller

improvements (only up to 50%). In contrast, the control heuristic

provides the best reductions: the space of reachable states becomes

up to 50 times smaller. Moreover, the output strategy traverses

only fully controllable states, i.e., the number of non-controllable

reachable states goes down to 0.
The final batch of experiments was designed to further inspect

the efficiency of our approach. To this end, we used the two-drone

Basic strat. Simple Reduct. Epistemic Heur. Control Heur.

reach nctr %reach %nctr %reach %nctr %reach %nctr

782 256 1 2 1 2 5 8

1022 350 4 6 1 2 1 2

1147 385 2 4 5 6 3 4

1257 430 10 13 9 13 5 9

1601 512 3 5 3 6 2 4

1853 625 4 5 4 4 4 4

2527 834 1 2 1 2 1 2

Table 3: Randomised Example (2 Drones / 5 Energy Pts)

variant of the Drone benchmark, and randomly transformed approx-

imately 50% of locations by adding non-controllable actions (i.e.,

the wind). The output of the experiments is presented in Table 3,

with the percentages showing the fraction of reachable states that

are left after the optimization. The results consistently display a

high degree of reduction: the optimized strategies have roughly 100

times smaller sets of reachable states (as well as non-controllable

reachable states) regardless of the heuristics being used.

5 CONCLUSIONS
In this paper, we present a framework for strategy synthesis and

optimization based on a new notion of strategic dominance w.r.t.

a given context. The key idea is to identify the critical parts of

execution of the system, as controlled by a given partial strategy.

In our case, we have selected, as the primitive building block, the

correspondence between each state where the strategy gains the

control and the set of states where the strategy returns the control

to the environment.

Based on the concept, we prove that strategic dominance pre-

serves enforceability. We identify a related decision problem of

optimality for partial strategies, and show that it is co-NP-complete.

Moreover, we develop a framework for on-the-fly model checking

of strategic abilities through strategy synthesis, that uses strate-

gic dominance to reduce the space of candidate strategies. We

also present how to apply the dominance to optimize an existing

strategy with respect to a given quality condition and a heuristic

preorder. Finally, we evaluate the framework experimentally on

several scalable benchmarks with very promising results.

A number of interesting research paths is left for future work.

Firstly, there is a vast room for improvement for the presented

algorithms, e.g., by means of efficient data structures or more suc-

cessful heuristics. Secondly, we have shown that there are certain

conditions under which the synthesis can be performed in a fully

parallel way. We plan to refine the conditions, and come up with

parallel algorithms for strategy synthesis. Note that, even if fully

independent partitioning of state-space is not possible, robust com-

munication and conflict resolution can significantly improve the

efficiency. Thirdly, and perhaps most importantly, the presented

theory is not suitable for dealing with properties other than en-

forceability. We thus plan to extend it to handle a wider palette of

formulas, ideally targeting the full language of ATLir.
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