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ABSTRACT
In this paper we consider the problem of how a reinforcement learn-
ing agent that is tasked with solving a sequence of reinforcement
learning problems (Markov decision processes) can use knowledge
acquired early in its lifetime to improve its ability to solve new
problems. Specifically, we focus on the question of how the agent
should explore when faced with a new environment. We show that
the search for an optimal exploration strategy can be formulated
as a reinforcement learning problem itself, albeit with a different
timescale. We conclude with experiments that show the benefits of
optimizing an exploration strategy using our proposed approach.
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1 INTRODUCTION
One hallmark of human intelligence is our ability to leverage knowl-
edge collected over our lifetimes when we face a new problem.
When we first drive a new car, we do not re-learn from scratch
how to drive a car. Instead, we leverage our experience driving
to quickly adapt to the new car (its handling, control placement,
etc.). Standard reinforcement learning (RL) methods lack this ability.;
when faced with a new problem—a new Markov decision process
(MDP)—they typically start from scratch, initially making decisions
randomly to explore and learn about the current problem they face.

In this paper we focus on one aspect of lifelong learning: when
faced with a sequence of MDPs sampled from a distribution over
MDPs, how can a reinforcement learning agent learn an optimal
policy for exploration? Specifically, we study the question of, given
that an agent is going to explore, which action should it take?

After formally defining the problem of searching for an optimal
exploration policy, we show that this problem can itself be mod-
eled as an MDP. That is, the task of finding an optimal exploration
strategy for a learning agent can be solved by another reinforce-
ment learning agent that is solving a new meta-MDP : an MDP
that operates at a different timescale, where one time step of the
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meta-MDP corresponds to an entire lifetime of the RL agent. This
difference of timescales distinguishes our approach from previous
meta-MDP methods for optimizing components of reinforcement
learning algorithms, [2, 4, 5, 9, 10].

We contend that using random action selection during explo-
ration (as is common when using Q-learning, [11], Sarsa, [8], and
DQN, [6]) ignores useful information from the agent’s experience
with previous similar MDPs that could be leveraged to direct explo-
ration. To address this problem, we separate the policies that define
the agent’s behavior into an exploration policy (which governs
behavior when the agent is exploring) and an exploitation policy
(which governs behavior when the agent is exploiting).

2 PROBLEM STATEMENT
We define the performance of the advisor’s policy, µ, for a specific
task c ∈ C to be ρ(µ, c) = E

[∑I
i=0

∑T
t=0 R

i
t
��µ, c] , where Rit is the

reward at time step t during the ith episode.
LetC be a random variable that denotes a task sampled from dC .

The goal of the advisor is to find an optimal exploration policy, µ∗,
which we define to be any policy that satisfies:

µ∗ ∈ argmax
µ

E [ρ(µ,C)] . (1)

To optimize this objective, we formulate the problem of finding
an optimal exploration policy as an RL problem where the advisor
is itself an RL agent solving an MDP whose environment contains
both the current task, c , and the agent solving the current task 1.

3 A GENERAL SOLUTION FRAMEWORK
Our framework can be viewed as a meta-MDP—an MDP within an
MDP. From the point of view of the agent, the environment is the
current task, c (an MDP). However, from the point of view of the
advisor, the environment contains both the task, c , and the agent.
At every time-step, the advisor selects an actionU and the agent an
action A. The selected actions go through a selection mechanism
which executes action A with probability 1 − ϵi and action U with
probability ϵi at episode i . Figure 1 depicts the proposed framework
with action A (exploitation) being selected. Even though one time
step for the agent corresponds to one time step for the advisor, one
episode for the advisor constitutes a lifetime of the agent (all of its
interactions with a sampled task). From this perspective, wherein
the advisor is merely another reinforcement learning algorithm, we
can take advantage of the existing body of work in RL to optimize
the exploration policy, µ.
1Full details and derivations of this formulation can be found at https://arxiv.org/abs/
1902.00843
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Problem Class R R+Advisor PPO PPO+Advisor MAML
Pole-balance (d) 20.32 ± 3.15 28.52 ± 7.6 27.87 ± 6.17 46.29 ± 6.30 39.29 ± 5.74

Animat −779.62 ± 110.28 −387.27 ± 162.33 −751.40 ± 68.73 −631.97 ± 155.5 −669.93 ± 92.32
Pole-balance (c) — — 29.95 ± 7.90 438.13 ± 35.54 267.76 ± 163.05

Hopper — — 13.82 ± 10.53 164.43 ± 48.54 39.41 ± 7.95
Ant — — −42.75 ± 24.35 83.76 ± 20.41 113.33 ± 64.48

Table 1: Average performance on discrete and continuous control unseen tasks over the last 50 episodes. The use of the advisor
leads to improved performance over random exploration.

Figure 1: MDP view of interaction between the advisor and
agent. At each time-step, the advisor selects an actionU and
the agent an action A. With probability ϵ the agent executes
actionU and with probability 1 − ϵ it executes action A.

We experimented training the advisor policy using two different
RL algorithms: REINFORCE, [12], and Proximal Policy Optimization
(PPO), [7]. Pseudocode for an implementation of our framework us-
ing REINFORCE, where themeta-MDP is trained for Imeta episodes,
is described in Algorithm 1. By updating µ every n steps, instead of
the end of the lifetime of the agent, we can adapt the pseudocode
to use PPO.
Algorithm 1 Agent + Advisor - REINFORCE
1: Initialize advisor policy µ randomly
2: for imeta = 0, 1, . . . , Imeta do
3: Sample task c from dc
4: for i = 0, 1, . . . , I do
5: Initialize π to π0
6: st ∼ dc0
7: for t = 0, 1, . . . , T do

8: at ∼

{
µ with probability ϵi
π with probability (1 − ϵi )

9: take action at , observe st , rt
10: for t = 0, 1, . . . , T do
11: update policy π using REINFORCE with st , at , rt
12: for k = 0, 1, . . . , IT do
13: update policy µ using REINFORCE with sk , ak , rk

4 EMPIRICAL RESULTS
We present experiments for discrete and continuous control tasks
in the following problem classes: Pole-balancing [8], Animat [9],
Hopper, andAnt [1].We demonstrate that in practice themeta-MDP,
Mmeta, can be solved using existing RL methods, and the learned
exploration policy leads to improved performance. We compare our
framework to Model Agnostic Meta Learning (MAML) [3].

(a) Performance curves during
training comparing advisor policy
(blue) and random exploration

policy (red).

(b) Average learning curves on
training tasks over the first 50

advisor episodes (blue) and the last
50 advisor episodes (orange).

Figure 2: Advisor results on pole-balancing problem class.

Figure 2 helps us understand the behavior of our framework;
these results were obtained on Cartpole. Figure 2a contrasts the
cumulative return of an agent using the advisor for exploration
(in blue) with the cumulative return obtained by an agent using ϵ-
greedy random exploration (in red) during training over 6 training
tasks. The exploitation policy, π , was trained using REINFORCE for
I = 1,000 episodes and the exploration policy, µ, was trained using
REINFORCE for 500 iterations. The horizontal axis corresponds to
iterations—episodes for the advisor. The horizontal red line denotes
an estimate (with standard error bar) of the expected return that an
agent will obtain during its lifetime if it samples actions uniformly
when exploring. The blue curve (with standard error bars from 15
trials) shows how the expected return that the agent will obtain
during its lifetime changes as the advisor learns to improve its
policy. Figure 2b shows the mean learning curves (episodes of an
agent’s lifetime on the horizontal axis and average return for each
episode on the vertical axis) during the first and last 50 iterations.
The mean return were 25,283 and 30,552 respectively.

Table 1 shows the average performance of the learned exploita-
tion policy on novel tasks trained using different exploration strate-
gies. The table compares the return of the best policy found by
learning using REINFORCE (R) and PPO, with and without an ad-
visor, and using MAML, given a maximum training time of 500
episodes.

5 CONCLUSION
In this work we developed a framework for leveraging experience
to guide an agent’s exploration in novel tasks, where the advisor
learns the exploration policy used by the agent solving a task. We
showed that a few sample tasks can be used to learn an exploration
policy that the agent can use improve the speed of learning on
novel tasks.
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