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ABSTRACT
Diagnostic systems for complexmachines are highly specialized and
cannot be applied in other domains without significant effort. Our
goal is to improve the robustness of diagnostics with an adaptable
monitoring framework for identifying and explaining anomalous be-
havior that can be easily modified for different domains or systems.
We define a vocabulary for reasonable data—to precisely identify
contradictions between expected and anomalous behavior and a
language—to express rules, policies, and constraints/preferences
of the user. We combine this framework with explanation mecha-
nisms to describe the core reasons and support for a reasonableness
judgment made by running the reasoner over the reasonable data,
rules and the state of the related components.
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1 INTRODUCTION
Explaining why errors occur is a two part problem. The first step
is detection. Diagnostic systems have been successful in detecting
errors for computers, spacecraft, and computer hackers on the
Internet. However these systems are domain specific–they cannot
be applied to other domains and disciplines without a sizable effort.
They are also static–they are not able to be augmented. These
systems need to be able to absorb feedback and learn from their
mistakes to improve as error-detecting systems.

The second step towards explaining errors is to create the capa-
bility for diagnostics systems to explain. Although these systems
can pinpoint what went wrong, they can rarely report why it hap-
pened, or how to fix the error in the future. Our self-monitoring
system aims to answer these questions by providing an explanation
of how and why errors occur.

With the need for malleable, self-explaining systems, we present
a new self-monitoring framework that can impose constraints of
reasonableness in multiple domains. With the input of a domain-
specific knowledge base and rules, it uses a reasoner, data parser
with a ontology, and an explainer to judge and explain whether the
input is reasonable or not. We demonstrate how this technology
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can be used to detect and explain anomalies after the fact, and
also motivate its use as a real-time monitoring system. We also
introduce the use of explanations as a type of feedback to learn the
rules and reasons, and make better judgments in future iterations.

2 PREVIOUS WORK
Model-based diagnosis [6] has been extended to software faults and
failures [13], reasoning about plans [2], and hypothetical reasoning
[5]. Our system uses inspiration from model-based diagnostics but
presents an adaptable framework to impose rules and constraints
of reasonability in different domains.

Monitoring for reasonability is an open topic in computer science.
Collins and Michalski present a formal ontology for reasonability
[4], but it lacks a structural implementation. Another formal ap-
proach without implementation is the theory of rational action [3].
Although formal approaches are provably correct, they do not lend
themselves well to an implementation. Many have tried to make
ontologies and generalizations of these kinds of judgments, but
they remain specific to the machine specifications [1].

Monitoring systems have also been well-studied in robotics. Liv-
ingston was a single model-based diagnostic monitoring tool that
reconfigured component modes[12], but was not adaptable to other
domains easily. Other work has examined how to select different
planning choices through monitoring[9], while our monitoring
system supplements planning choices with commonsense to make
better decisions. Our work also aims to enhance explainability and
trust for robotic systems, especially within robot planning[7].

Preliminary iterations of this monitoring system were domain
specific[8]. The novel idea here is that we have extended that work
so that the system logs and rules are in standardized formats. This
means that the general monitoring framework could be used for a
multitude of applications, including planning, robotic manipulation,
and opaque mechanical systems.

3 IMPLEMENTATION
We demonstrate that our monitoring system can provide accurate
judgments of reasonableness and convincing explanations of rea-
sonableness by applying the system to two use cases: descriptions
of perception (which could be generated from an opaque scene
understanding systems), and vehicle plans (from an autonomous
vehicle planning system, which could be proprietary).

3.1 Log Generation
In order for our monitor to be generic, we require that the log of the
system, or data, is represented in Resource Description Framework
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(RDF)1. RDF, a W3C standard, is a data model for interoperable
and extensible data exchange. RDF was chosen so that the sub-
sequent data, use cases, and rules could be transparently shared
across different applications. For perception, we generate the log
for a description by parsing for relevant concepts. For this per-
ception description use case, we develop a set of anchor points to
extract commonsense knowledge from ConceptNet[11], and prim-
itive actions are represented as a set of conceptual dependency
primitives. These conceptual dependency primitives are used to
construct rules, with the actor, object, and context information as
input. The details are described in previous work[8]. For vehicle
planning, we extend the representation to include vehicle primitive
actions like yield, move (with speed and direction), stop and turn.
Context is also extended to cover external factors that are specific
to vehicle planning like stop lights, pedestrians, and weather.

3.2 State and Ontology
In the case of a planning system, the log data contains two states:
the previous state information, and the next intended state infor-
mation. This state contains information about the vehicle state
and other perceptual information that may affect vehicle state, like
pedestrians or other objects in the road, and traffic light colors.
In the case of a perception mechanism, there is only one state.
To aggregate this state information, we extract concepts from the
perception description (noun phrases, verb phrases, prepositional
phrases, etc). We then search for relevant information in a com-
monsense database that can connect and abstract these concepts
together.

To represent ontology information, we support RDF Schema2,
which allows the description of groups of related resources and
the relationships between these resources. The ontology represents
high level concepts that we refer to as “anchor points,” which is
described in previous work[8]. We have assigned these anchor
point nodes to represent the broad categorizations that represent
primitive acts and the constraints in our rule system.

3.3 Rules and Explanations
We require that our rules are written in AIR3. AIR is a Web-based
rule language that is grounded in RDF and supports similar inter-
operability and extensibility. Its reasoner can generate and track
explanations for its inferences and actions. AIR explanations are
themselves in RDF and can be used for further reasoning.

AIR nicely captures the reasons and descriptions necessary to
output explanations. Using python and rdflib4, the output RDF
file is parsed for the justifications and rule descriptions, which
are combined together into a human-readable explanation. This
human-readable explanation is also coupled with a report of all the
rules that were fired, which could be used for feedback in future
iterations of the monitoring system.

For the perception problem, we use the rules from Schanks con-
ceptual primitives [10]. For the vehicle planning problem, we use
rules derived from the Massachusetts driving manual5. These rules
1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-schema/
3http://dig.csail.mit.edu/2009/AIR/
4https://github.com/RDFLib/rdflib
5https://www.mass.gov/lists/drivers-manuals

can be easily changed to express the rules of the road for other
states and areas.

4 EVALUATION
We developed our test sets based on interviews with potential cus-
tomers. The perception description test set is from 100 descriptions
that we previously developed for a preliminary domain-specific
system[8]. The descriptions are equally split between unreasonable
and reasonable, with different verbs, subjects, objects, and contexts.

For the vehicle action test cases, we developed 24 examples.
These examples were generated from four lights (red, yellow, green,
no light), three motions (move forward, turn, stop), and a binary
choice for obstructions (pedestrian or no pedestrian). For validation
purposes, we check that our monitor can determine whether a
perception description or a vehicle action is reasonable or not. We
labeled each description of a vehicle action or perception description
with a 1 or 0 as reasonable (1) or unreasonable (0).

Our adaptable monitor system performs with 82% accuracy on
the perception description data set, and it judges reasonableness
with 100% accuracy on the vehicle action test set. Since there are
a countable number of rules and combinations, this makes sense.
However, when deploying the system in a working vehicle simu-
lation or platform, we will need to create more sophisticated and
complex rules, which may cause the monitor to perform less accu-
rately.

To evaluate how “convincing” our explanations were, we re-
cruited 100 users from Amazon Mechanical Turk to evaluate a set of
40 explanations, evenly split between reasonable and unreasonable
judgments. The set contained 20 vehicle planning explanations, and
20 perception description examples. Participants were instructed
to rate each explanation on a five point Likert scale from 1 to 5 (1
being “not convincing” and 5 being “very convincing.”) The average
score over all explanations was 3.94, indicating that most users
were moderately convinced by the explanations.

5 CONTRIBUTIONS
In this work, we present a framework for a generic monitoring
system that can judge and explain the reasonableness of an input
log, given a set of rules. We chose to represent our log and state
data in RDF and our rules in AIR in order to have a framework that
is easy to augment, extend, and adapt to other applications.

The key idea is here is that monitoring should not be invasive.
Our adaptable monitoring system was designed so that it can be
attached to existing working systems to make them work slightly
better; to address rare and unusual anomalies that may not be
well-represented in training data.

Complex machines work fairly well in practice, but when they
fail, diagnosing the root-cause is difficult. More so, developing
an explanation of how and why they failed is even harder. Self-
monitoring constructs, like the one proposed in this paper, are a
small step towards developing more trustworthy machines that
perform within the constraints of reasonableness.
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