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ABSTRACT
One of the major drawbacks of RL is the low sample efficiency of
the learning algorithms. In many cases domain expertise can help
to mitigate this effect. Teacher-Student framework is one such para-
digm, where a more experienced agent (teacher) upon being queried
helps to accelerate the student’s learning by providing advice on the
action to take in a given state. Real world teachers not only provide
the action to take in a given state but also provide a more informa-
tive signal using the synthesis of knowledge they may have gained
with experience. With this motivation, we propose a richer advising
framework where the teacher augments the student’s knowledge
by also providing the expected long term reward of following that
action. The student can then use this value to steadily guide its
Q-Network in the correct direction which can lead to a quicker con-
vergence. To help student relive the advices received throughout
its learning, we introduce an additional memory called the Advice
Replay Memory (ARM). Results show that a student following our
approach (a) is able to exploit the environment better, and (b) has a
steeper learning curve.
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1 INTRODUCTION
Low sample efficiency of RL algorithms becomes critical in many
real world domains like [5] [4] [1]. Transfer Learning [9] aims to
alleviate this problem by exploiting domain expertise to accelerate
the learning speed. Teacher-Student framework [10] is one such
paradigm where a more experienced agent (teacher) helps to ac-
celerate the student’s learning by providing advice on the action
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to take in a given state. The student queries the teacher about a
particular state and the teacher provides advice about the action to
take in that state. An RL agent typically tries sub optimal actions
repeatedly before converging to the optimal policy. Such transfer
of advice can help mitigate this behavior and potentially lead to a
better learning curve.

Although this guided exploration helps the student to explore
the promising parts of the state space more effectively, real world
teachers typically don’t provide only the action to take in a given
state. Instead, they provide a more informative signal using the
synthesis of the knowledge they may have gained over continuous
experience in the environment. Such richer advising can help the
student to relate better to the action, enabling it to make better
use of this knowledge in the future. Using this insight, we propose
to extend the current advising framework to utilize the teacher’s
knowledge better. Our approach is a first step towards studying
such informative advice exchange methods in RL. In particular, the
proposal is to make the information provided by the teacher richer
by advising the student not just on the best action to take in a state
but also about how promising the action is. Given that teacher in
our paper is modeled as an RL agent with a Q-function [12], it has
a natural way of calculating this measure. We therefore propose
to include the Q-value associated with the state-action pair as the
additional piece of advice.

In the real world, agents do not have access to each other’s
learning architectures. The environment models, internal network
structures and learning algorithms might vary across the differ-
ent agents. One agent might be using Sarsa(λ) [8] as the learning
algorithm and a much deeper / complex neural network like the
one proposed in [7] as the learning architecture whereas the other
agent might be using Double Q-learning [11] along with a smaller /
simpler network as proposed in [6]. Hence no direct mapping exists
between the two agents and using each other’s internal parameters
becomes infeasible.

For experimentation purposes, we demonstrate the results of
our approach on the 5 Atari 2600 games from the Arcade Learning
Environment [3]. We used the 2 most popular deep Q-learning
models proposed in [6] and [7], as the underlying neural networks
for the student and the teacher. We believe that the use case where
the teacher is trained on a complex network while the student is
trained on a much simpler network is particularly useful. This is
because in real world situations the student can have small memory

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1997



and computation limits (like hand-held devices). Such a student
can significantly benefit by querying the teacher who may have
access to more memory and computation power (a large server)
and hence can train using a more complex architecture. Our results
show that the student following our approach

• is able to exploit the environment better
• has a steeper learning curve

2 APPROACH
We propose to extend the current Teacher-Student framework by
making the teacher provide more information to the student by
advising it not just on the best action to take in a state but also about
how promising that action is. Given that we model the teacher as an
RL agent with a Q-function, it has a natural way of calculating this
measure given by Q(s,a) which is the long term reward associated
with an action. An RL agent without a teacher would have to learn
this state-action pair value on its own. Once the expected value
vT becomes available through the teacher’s advice, the agent can
move its network in the direction of these values.

Due to the high level of generalization over the state space in
DQN, the input (s,a) cannot be directly mapped to the output vT
in one shot. Doing large updates in direction of vT might lead to
overfitting and unstability. Also, it would be wasteful to use these
values only once and then forget about them. Student must also
give proper importance to the experiences it gathers by following
its own policy. Hence, the student needs to smoothen the training
over both kind of experiences: experiences due to its own policy
and experiences due to teacher’s advice. To balance learning across
both these experiences the student along with its normal updates,
also needs to steadily move its network in the direction of the
advised values throughout its learning. To handle this, we introduce
an additional replay memory called the Advice Replay Memory,
(ARM). ARM stores the advice tuples (state,action,value) given
by the teacher. The student can therefore repeatedly relive the
experiences due to teacher’s advice over time. Thus the student’s
network has to minimize a loss L′ due to the tuples in ARM given
by -

L′(θ ) =s,a,vT [(vT −Q(s,a;θ ))2] (1)
Due to the nature of updates in Q-Learning, the target of DQN

((r+maxaQ(s
′,a))) fluctuates. On the other hand, the loss due to the

tuples in ARM has a fixed target value vT , since these values were
given by the teacher who is assumed to be following a fixed policy.
The student relives experiences from these two replay memories.
To smoothen the training over both of these experiences, at every
training step, we randomly sample a mini batch from each of these
memories and compute the losses for them.

3 EXPERIMENTAL ANALYSIS
This section showcases the practical performance of our approach.
To demonstrate the generality of our framework we conducted 2
sets of experiments. First, we demonstrate flow of knowledge from
the teacher to the student, with both having the same network
architecture. Then we demonstrate knowledge transfer across het-
erogeneous network architectures using the models proposed by
[7] and [6] as the underlying architectures for the teacher and the

student respectively. We compare the performance of our algorithm
against current state of the art Teacher-Student advising framework
[2]. In their approach, the teacher provides advice only about the
optimal action to take in the given state. We ran our experiments
on a set of five Atari 2600 domain games from the Arcade Learning
Environment [3] namely: Boxing, Space Invaders, Alien, Qbert and
Breakout. Due to space constraints, we present the graphs only for
Qbert.

Figure 1 shows that due to guided exploration, the student to
whom the teacher was providing advice about the optimal action
to take, is able to outperform (in terms of learning rate) the agent
who was learning without any teacher. We can also observe that
the performance of the student is boosted further when the teacher
appends the knowledge of the estimated Q-value of the action in
the advice.

Performance improvement in the case of heterogeneous
network architecture: One thing that stands out in the case of
heterogeneous networks is that, advising is leading to a much
higher performance improvement as compared to the case when
the teacher and the student had homogeneous networks. [7] showed
that their model is able to outperform the model proposed by [6]
in terms of the maximum achievable scores on convergence. It
implies that by learning without teacher, the underlying network
architecture of the student will not be able to perform as good
as the teacher’s network. Combining this with the average game
score values from figure 1 (b), we conclude that advising from
a comparatively superior teacher therefore becomes a lot more
valuable for the student and results in a much higher performance.

(a) Homogeneous networks (b) Heterogeneous networks

Figure 1: Qbert training comparison:Agentswere trained for
30M frames with each training epoch size of 40k frames.

4 CONCLUSION AND FUTUREWORK
This paper investigates the role of richer knowledge transfer for the
case of Teacher-Student framework. We show that if the teacher
provides advice to the student about the optimal action to take along
with its expected long term reward, the student is able to outperform
the state-of-the-art advising framework. In spite of many papers
that looked at the teacher student architecture, usage of Qvalue
(vt ) as advice to student has not been explored in literature. We not
only propose the idea but also present a complete framework to
make effective use of the richer advising model. In particular, we
introduce a novel architecture named ARM to effectively use the
advice provided by the teacher. We also propose a way of giving
proper attention to both kinds of experiences the student receives
(experiences due to advice from teacher and experiences due to
normal learning).
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