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ABSTRACT
Community detection has been widely studied in the areas of so-
cial network analysis and recommendation system. However, most
existing research focus on cases where relationships are explicit or
depend on simultaneous appearance. In this paper, we propose to
study the community detection problem where the relationships
are not based on simultaneous appearance, but time-delayed ap-
pearances. In other words, we aim to capture the relationship where
one individual physically follows another individual. In our attempt
to capture such relationships, the major challenge is the presence
of spatial homophily, i.e., individuals are attracted to locations due
to their popularities and not because of communications.

In tackling the community detection problem with spatial ho-
mophily and delayed responses, we make the following key contri-
butions: (1) We introduce a four-phase framework, which by way
of using quantified impacts excludes homophily. (2) To validate
the framework, we generate a synthetic dataset based on a known
community structure and then infer that community structure. (3)
Finally, we execute this framework on a real-world dataset with
more than 6,000 taxis in Singapore. Our results are also compared
to those of a baseline approach without homophily-elimination.
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1 INTRODUCTION
Community detection has been widely studied in the areas of social
network analysis and recommendation system. Most early works
in these areas focus on community detection with definite rela-
tionships among individuals, usually represented in the form of a
connected graph; thus the methods developed are mostly related to
graph partitioning [3]. However, these methods are mostly infeasi-
ble for use in cases where relationships are not explicitly observable.
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One such example is on detecting communities using only human
trajectories obtained using sensors such as GPS, Wifi, or mobile
phone communication logs [2, 4–6].

Our work differs from the link-based and trajectory-based com-
munity detection literature in the following aspects: (1) relation-
ships among individuals are not directly observable, but have to
be inferred from location traces, and (2) the relationships inferred
from location traces are not based on simultaneous appearance,
but sequential (time-delayed) appearances. In other words, we aim
to capture the relationship that would induce one individual to
physically follow another individual. However, a major challenge
in our effort is the existence of spatial homophily, which refers to
individuals appearing at specific places in sequence due to factors
such as similar preferences or location popularity and not due to
the actual relationship.

To address these challenges, we create a framework that can
identify homophily-free relationships from sparse location traces,
deduce communities, and derive interaction hotspots for members
belonging to the same community.

2 THE COMMUNITY DETECTION
FRAMEWORK

To demonstrate the practicality of our framework, we choose to
study a mobility trace dataset from a large taxi fleet operator in
Singapore. We assume that mobility traces of subjects can be clearly
labeled into episodes with origins and destinations. We also assume
that we can identify the time the subject spent around the origin be-
fore departing and moving towards the destination (this idling time
can be viewed as the search cost associated with the episode). There
are four interconnecting components in our community detection
framework, which are described below.
Trajectory Analytics: For each episode, we process the raw traces
to find out: 1) the zone and time period this episode originates from,
2) the amount of idling time or dwell time (DT ) this subject spent in
the zone before starting the episode, and 3) a list of other subjects
who have episodes originating from the same zone earlier and
might play the role of an influencer.
Graph Construction: The goal of this component is to infer the
strength of the relationship between any pair of subjects and con-
struct a graph representing the inferred social network among
subjects. To estimate subject relationships without the interference
of the spatial homophily effect, we adopt a statistical approach:
treat all of a subject’s dwell times as the response variable, and
estimate the impact of other subject’s presence in the same zone.
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This statistical estimation can be accomplished by executing the
following regression model:

DTi = αi + βjiX ji +
∑
z∈Z

λzKz + ϵi ,∀j ∈ Di , (1)

where DTi is subject i’s DT , αi is the constant term, βji is how
strongly j affects i’s DT , λz is the zone-specific impact on DT , ϵi
is the Gaussian noise. Di is the set of all potential influencers who
might have relationships with subject i and are derived from the
Trajectory Analytics phase. For any pair (i, j ), the corresponding
Xi j is a linearly normalized real value between 0 and 1, where 1
denotes episodes’ origins are overlapping. The vector of Kz is a list
of indicator variables, where Kz is set to 1 if this particular DT is
from the zone z. Finally, when constructing the relationship graph,
we denote subjects as nodes, and create a directed edge (j, i ) with
weight βji only if it is statistically significant to the level of 1%.
Note that the weight of the edge (j, i ) is set to −βji , since a negative
coefficient actually represents a positive relationship.
Community Detection: Given a social network with relation-
ships as weighted edges, the community detection problem is well-
defined and well-studied. What we implement in our framework
is based on a software library utilizing a standard modularity-
maximizing algorithm by [1].
Interaction Hotspot Detection: For each identified community,
this component is designed to identify a collection of zones where
intense interactions happened. This is achieved by the following
regression model:

DT cz = αcz + β
c
zX

c
z + ϵ

c
z , (2)

where DT cz represents the DT s of all trips occurred in zone z for
community c , αcz is the constant term for z, X c

z is a binary variable
indicating whether there are any pair of subjects from c appearing
in z within the stipulated time window L, and ϵcz is the Gaussian
noise. For zones with significant negative coefficients (we again use
the significance level of 1%), βcz , we conclude that the presence of
other subjects from the same community offers significant help in
reducing DT .

3 VALIDATION USING SYNTHETIC DATASET
To validate our framework, we use a synthetic dataset that is gen-
erated using a simulation. This simulation produces movement
traces with a known community structure and location topology
as inputs. The performance of our platform is measured using two
metrics: 1) false negatives, i.e., the number of missed relationships
(#MR), and 2) false positives, i.e., the number of wrongly identified
relationships (#WR). Each test scenario is characterized by two
parameters: the number of zones and the demand profiles. Without
loss of generality, we use networks with 5 and 10 zones, and denote
them as Z (S ) and Z (M ) respectively. For the demand profiles, we
have low, middle, and high levels of demands, and they are denoted
asD (L),D (M ) andD (H ). The results along two defined dimensions
are plotted in Figure 1. When looking at the results, we can see
that our framework can identify all communities except for the
low-demand scenarios. Our framework performs best when the
level of demands is non-trivial and the network size is large. For
the real-world dataset that we are about to test our framework
on, these two features are both prominent, we thus expect equally

Figure 1: Number of false negatives and positives.

Table 1: Comparison against the baseline approach.

Nodes Edges Density # Com # Mem
Baseline 6,070 164,262 0.4% 8 758.75
Ours 1,921 4,710 0.1% 104 18.47

good performance although we cannot directly verify the identified
communities with ground truth (none existed).

4 A REAL-WORLD CASE STUDY
To realistically test our approach, we apply our framework to a
real-world dataset collected from a large taxi fleet in 2009, in which
6,120 taxi drivers are considered. We present the results obtained
both from our approach and a baseline alternative not consider-
ing spatial homophily elimination. Table 1 shows the summary
statistics. From the summary we can clearly see that the baseline
approach produces the much larger network, identifies much fewer
communities (denoted as # Com), while having a large number of
members (denoted as # Mem), which is unrealistic. The baseline out-
comes clearly demonstrate the strong impact of spatial homophily,
and the consequence of ignoring it. Recognizing that this is in the
year of 2009, during which free mass messaging Apps were still not
available in Singapore, we doubt that a community can have size
beyond ten members. On examining the community structures, we
identify that the larger communities are indeed mostly composed of
several cliques, but connected through some key members. We also
discover that members of communities mostly interact at a small
number of strategic locations. The extreme cases are communities
that only interact at hotspots such as the airport or the central
business district (however, these interactions are not due to spatial
homophily, as established via our regression model).
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