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ABSTRACT

Methods for learning and planning in sequential decision problems
often assume the learner is fully aware of all possible states and ac-
tions in advance. This assumption is sometimes untenable: evidence
gathered via domain exploration or external advice may reveal not
just information about which of the currently known states are
probable, but that entirely new states or actions are possible. This
paper provides a model-based method for learning factored markov
decision problems from both domain exploration and contextually
relevant expert corrections in a way which guarantees convergence
to near-optimal behaviour, even when the agent is initially unaware
of actions or belief variables that are critical to achieving success.
Our experiments show that our agent converges quickly on the
optimal policy for both large and small decision problems. We also
explore how an expert’s tolerance towards the agent’s mistakes
affects the agent’s ability to achieve optimal behaviour.!
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1 INTRODUCTION

In this paper, we show how an agent can learn optimal behaviour
in a complex sequential decision problem under unawareness. By
unawareness, we mean not just that the agent is uncertain about
the transition probabilities between states, but that the agent may
not initially know that certain states or actions even exist [4]. Such
scenarios are common in the real world. In human discussion for
example, answers to a person’s inquiry may not only provide in-
formation about which of the questioner’s existing hypotheses are
likely, but may also reveal new unconsidered hypotheses [1]; in
medicine, pharmacologists may discover a drug has a completely
unforeseen side-effect in certain children, even after years of ob-
serving its effects on adults.

1A detailed account of this work can be found at [5]
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Several methods jointly learn both a model of the environment
and optimal behaviour of decision problems [2, 3, 8], but most
assume the agent is aware of all relevant actions and states at the
start of learning. Many works also leverage expert interventions
to improve agent performance [6, 10-12] but again assume the
expert’s intended meaning can be understood without expanding
the agent’s awareness of the state and action space.

Recent work on Markov Decision Processes with Unawareness
(Mppus) [7] allow an agent to learn optimal behaviour even when
it starts unaware of some states and actions. This work deliberately
leaves abstract the mechanism by which agents discover unforeseen
states and actions. Our paper builds on this work in two ways.
First, we provide an agent who learns a structured model of the
environment, and discovers explicit belief variables rather than
atomic states. This makes learning tractable for larger, complex
problems. Second, we provide a concrete mechanism by which an
agent discovers unforeseen factors: it exploits the agent’s reasoning
and dialogue policies of both the learning agent and an expert.

2 UNAWARENESS LEARNING MODEL

We define episodic, factored markov decision processes with un-
awareness (FMDPU) with two tuples: (X, S, Se, AT, 7, R") and
(X0, A%, RO). The possible states S are represented as a joint assign-
ment to the set of belief variables X (thatis S = v(X*)), while A*
gives the set of possible actions; Ss, Se C S are the possible start and
end (terminal) states of an episode; 7 : S X AT X 8§ — [0, 1] is the
markovian transition function P(s’|s,a) and R : v(scope+(R)) —
R is the immediate reward function (where scope+(R) C XV is
the subset of variables which determine the reward an agent re-
ceives). The sets X* € X+ and A° C A* define the agent’s initial
awareness of the belief variables and possible actions relevant to
the problem. Likewise, for the agent’s initial reward function -
RO : scopeg(R) — R, the agent may be only aware of a subset of
the variables which are relevant to determining the reward.

The agent’s goal is to learn the optimal policy 74+ which chooses
the action a which maximizes the expected discounted return (i.e.,
the value function V;(s) = RY(s) + y Xses P(s'|s, 1(s))Vr(s"))
across all states s. If the agent knows 7~ and R*, we can calcu-
late V; via value iteration [9]. If not, we must learn the most
likely transition structure Pa§, (where Pa§, C X* is the set of
variables which influence the value of X, given that the agent
has performed action a) and associated parameters 5 from the
agent’s interactions with the domain via sequential trials Do.; =
[{(s0, @0, 71,51)s -, {St,as, 41, St+1)], where s¢, a;, and r; are the
current state, action taken, and reward received at time t. We can
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then update V; based on the agent’s changing estimate of the envi-
ronment using incremental structured value iteration (i-sv1) [2]. In
our task however, the agent’s unawareness may make converging
on 774 impossible. For example, the image of 74 may contain some
action a ¢ A%, or the optimal action may depend on the value of
some variable X; ¢ XO.

Our model therefore also includes a cooperative, fully-informed
expert who gives advice which might reveal members of X*, A*
and scope (R) that the agent is unaware of. Our aim was to mirror
human teacher-apprentice interactions, so rather than assuming the
expert can transfer all of its knowledge about the task at once (which
is typically impossible due to cognitive bounds, ignorance, and
other communicative constraints on human experts), we instead
allow the expert to interject with a minimal amount of contextually
relevant advice during learning. We identify three types of advice,
whose combination guarantee the agent converges on near-optimal
behaviour (see [5] for theorems and proofs):

(1) Advice on a better action (e.g., “At time ¢, it would have been
better to do action a’ than a;”)

(2) Resolving misunderstandings between previous pieces of
advice (e.g., ‘T advised doing a’ at time t, but not at time ¢’
because the value of variable X; at timest andt’ was different”)

(3) Explaining an observed reward the agent thinks is “impos-
sible” given the size of scopeg(R) (e.g., “The value of X also
affects your reward, which is why the last trial went poorly”)

Advice of types (2) and (3) occur as answers to the learning
agent’s query, queries the agent asks when it infers that the hy-
pothesis space of her current model is inconsistent with observed
evidence. Advice of type (1) occurs when the expert observes that
the agent has performed sufficiently poorly—the agent’s perfor-
mance drops some proportion 8 below 7, —and so this dialogue
move depends on the expert’s tolerance to the agent’s mistakes.

As well as allowing the agent to overcome its unawareness, we
also show how the agent can conserve its previous beliefs about 7~
and V as its awareness expands (rather than resetting its beliefs
upon each new discovery). On discovering a new variable Z at time
t, the agent can conserve what it has learned about the likely parent
structures by using the old posterior distribution (Pa$,|Do:;-1) to
inform a new prior over the new expanded set of possible parent
structures (including those parent sets which might contain Z):

PP = {(1 = PP Dos-1) i Z ¢ Pa
pP((Pas; \ Z)|Do:¢-1)  otherwise

Here, p < 0.5 controls the initial probability that the new vari-
able Z is a parent to X. Intuitively, this prior assumes that the
probabilistic structure in the expanded hypothesis space is close to
the agent’s estimates before discovering Z. Similarly, we can con-
serve the agent’s estimate of each state’s value by setting V/(s) =
VE=1(s[X*~1]). This means our agent initially assumes Z has no
effect on a state’s value, until future trials show otherwise.

For a detailed description of our model, including a formal ac-
count of the messages between the agent and expert, and explicit
algorithms for conserving information about 7~ and V, see [5].
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(b) Factory task (averaged over 20 experiments).

Figure 1: Cumulative Rewards. Shaded areas represent the
standard error from the mean.

3 EXPERIMENTS

We tested variations of our agent and expert on two well-known se-
quential problems: Coffee-Robot (256 state/action pairs) and Factory
(774144 state/action pairs). In each experiment, our agent begins
aware of only a subset of relevant to each problem. The default
agent used the learning model described in section 2 and follows
an e-greedy policy throughout (¢ = 0.1, § = 0.1). The truePol-
icy/random agents give upper/lower bounds on performance by
executing either an e-greedy version of ., or a completely random
action each time step, respectively. The nonConservative agent
does not conserve information about V or 7~ as described in section
2 but instead resets V and 7~ to their initial values each time it dis-
covers a new variable. The lowTolerance/highTolerance agents
change the expert’s tolerance to f = 0.01 and § = 0.5.

Figures 1a and 1b show the cumulative reward® gathered by each
agent. Despite starting unaware of factors critical to success, the
default agent quickly discovers the relevant actions and beliefs
with the expert’s aid, and converges on the optimal policy. The
non-conservative agent also learns the optimal policy, but slower.
This shows the value of conserving 7~ and V on discovering new
beliefs. We also see how expert tolerance affects performance. The
agent paired with high tolerance expert discovers less actions and
belief variables than its lower tolerance counter-parts, learns a
(marginally) worse final policy, and (in the case of the larger Factory
problem) earns a substantially lower cumulative reward. This is
because, in the high tolerance case, the expert decides early on
that the agent has learned a “good enough” policy, and so does not
reveal additional actions which would yield only a minor increase
in reward. For further analysis of these results, see [5].

2Full specifications at https://cs.uwaterloo.ca/~jhoey/research/spudd/index.php
3The cumulative rewards were discounted by 0.99 at each step to increase readability.
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