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ABSTRACT
DeepQ-Network (DQN) is a learning algorithm that achieves human-
level performance in high-dimensional domains like Atari games.
We propose that using an softmax operator, Mellowmax, in DQN
reduces its need for a separate target network, which is otherwise
necessary to stabilize learning. We empirically show that, in the
absence of a target network, the combination of Mellowmax and
DQN outperforms DQN alone.
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1 INTRODUCTION
Reinforcement learning [11] is a standard framework for study-
ing agents that learn to make sequential decisions to maximize
a utility function in potentially stochastic environments. Recent
breakthroughs have shown that the simple Q-learning algorithm
can yield human-level performance in complex domains (e.g., Atari
games [2]) when combined with deep neural networks. The first
algorithm to successfully instantiate this combination was the Deep
Q-Network (or simply DQN) [7].

An important element of DQN is a target network, a technique
introduced to stabilize learning. A target network is a copy of the
action-value function (or Q-function) that is held constant to serve
as a stable target for learning for some fixed number of timesteps.
However, the use of a target network moves us farther from online
learning, a desired property in reinforcement learning [10–12].
Our goal is to reduce the need for a target network in DQN while
ensuring stable learning and good performance.

Our results show that the recently proposed action-selection
operator, Mellowmax [1], reduces the need for a target network.
We incorporate theMellowmax operator into DQN, and propose the
Mellowmax-DQN (MMDQN) algorithm.We test the performance of
MMDQN in Acrobot, Lunar Lander, and Seaquest, and empirically
show that MMDQN performs better than DQN in the absence of a
target network.
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2 MELLOWMAX-DQN
2.1 Mellowmax Operator
In reinforcement learning, softmax operators have been used to
trade off exploration (trying new actions) and exploitation (trying
good actions). We use softmax in the context of value-function
optimization, where we focus on the Mellowmax operator [1] in
particular:

mmω (x) :=
log( 1n

∑n
i=1 exp(ωxi ))
ω

. (1)

This recently proposed operator yields convergent behavior in
learning and planning due to its non-expansion property, has an
entropy-regularization interpretation [4, 8, 9, 13], and facilitates
convergent off-policy learning even with non-linear function ap-
proximation [3]. Additionally, the temperature parameter ω offers
interpolation between max (ω →∞) and mean (ω → 0).

2.2 Deep Q-Network
Deep Q-Network (DQN) [7] is a variation of simple Q-learning with
three modifications: (1) it uses deep neural networks to approximate
the Q-function, (2) it samples a random minibatch of transitions
from experience replay buffer as training data, and (3) it employs a
target network that delays the update of target values to increase
learning stability. The update equation of DQN is

θ ← θ + α
(
r + γ max

a′
Q̂(s ′,a′;θ−) −Q(s,a;θ )

)
∇θQ(s,a;θ ) , (2)

where the real action-value Q is parameterized by θ while the
separate target network Q̂ is parameterized by θ−. The separate
weights θ− is synchronized with θ after periodic updates. This
process prevents divergence, because it fixes Q̂ which can serve as
a stable target during updates. However, note that using a target
network adds a delay between the time that Q is updated and the
time Q̂ is updated. We aim to show that it is possible to remove
target network from DQN, while still ensuring stable learning and
good performances.

2.3 MMDQN
We combine the Mellowmax operator and DQN, and propose the
Mellowmax-DQN (MMDQN) algorithm. MMDQN replaces the max
operator in the update equation above with Mellowmax, as in the
framework of generalized MDPs [6]. MMDQN further differs from
DQN as it does not use a separate target network Q̂ and its weights
θ−. Thus, the update equation of MMDQN is

θ ← θ + α
(
r + γmmω

a′
Q(s ′,a′;θ ) −Q(s,a;θ )

)
∇θQ(s,a;θ ) . (3)
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Figure 1: MMDQN (ω = 1,ω = 2) and DQN with no target
network in Acrobot

Figure 2: MMDQN (ω = 1,ω = 2) and DQN with no target
network in Lunar Lander

3 EXPERIMENTS
We chose two control domains (Acrobot, Lunar Lander) and one
Atari game domain (Seaquest) to test the performances of MMDQN.
For the control domains, we searched for the optimal hyperparam-
eters and architectures by testing different sizes of deep neural
networks (number of hidden layers ∈ {1, 2, 3}, number of neurons
per layer ∈ {100, 200, 300, 500}) to approximate the Q-function
and testing different learning-rate values (0.001, 0.0005, 0.0001). We
found that the best parameters were 3 layers, 300 neurons per layer,
and a learning rate=0.0005 for Acrobot, and 3 hidden layers, 500
neurons per layer, and a learning rate=0.0001 for Lunar Lander.
For Seaquest, we used an open source DQN implementation as
a baseline [5], and modified the code to tune the hyperparame-
ters as published in the original DQN paper [7]. We ran 100 trials

Figure 3: MMDQN (ω = 20,ω = 40) and DQN with no target
network in Seaquest

for Acrobot, 50 trials for Lunar Lander, and 5 trials for Seaquest,
respectively, averaging their returns to obtain final mean scores.

4 RESULTS
We compared the performances of MMDQN and DQN in the ab-
sence of a target network. Figure 1 shows that theMMDQN achieves
more stability than DQN in Acrobot. The learning curve of DQN
goes upward fast, but soon starts fluctuating and fails to improve to-
wards the end. By contrast, MMDQN (ω=1) succeeds in the absence
of a target network. We quantified the performance of MMDQN and
DQN by computing the sum of areas under their learning curves.
Setting the areas under the curves of MMDQN (ω = 1) as 100, the
areas under the curves of MMDQN (ω = 2) and DQN were 88.9%
and 78.7%, respectively. Similar results were observed in Lunar Lan-
der (Figure 2): MMDQN (ω = 1, 2) achieves more stable learning
and higher average returns than DQN. The areas under the curves
of MMDQN (ω = 2) and DQN were 93.4% and 79.2% of that of
MMDQN (ω = 1).

Finally, in Seaquest, the performance gaps between MMDQN
and DQN widened, as shown in Figure 3. DQN without a target
network was unable to learn, but MMDQN (ω=20) learned stably.
The areas under the curves of MMDQN (ω = 40) and DQN were
47.5% and 22.8% of that of MMDQN (ω = 20).

5 CONCLUSION
Mellowmax-DQN (MMDQN) combines the Mellowmax operator
and Deep Q-Network. MMDQN also does not use a separate target
network; it eliminates the delays of action-value updates caused
by a target network, and moves us closer to online reinforcement
learning. In multiple domains, our experimental results showed
that MMDQN achieves stable learning and outperforms DQN in
the absence of a target network.
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