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ABSTRACT
Balanced knockout tournaments comprise a common format

for sporting competitions and pairwise decision-making. In this

paper, we investigate the computational complexity of arranging the

tournament’s initial seeding and bribing players to guarantee one

player’s victory. We give a model of bribery in which the organizer

can both arrange the seeding and bribe players to decrease their

probability of beating other players at a cost, without exceeding a

budget. We also show that it is NP-hard to determine a bribery and

a seeding under which a given player wins the tournament with

probability 1, even when the pre-bribery matrix is monotonic, and

the post-bribery matrix is ϵ-monotonic and very close to the initial

one. We also show that for almost all n player inputs generated

by a well known deterministic model due to Condorcet, one can

always bribe the "top"O(logn) players so that there is an efficiently

constructible seeding for which any player wins.
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1 INTRODUCTION
Knockout tournaments are a popular format to determine a win-

ner from several players over the course of several rounds until only

one alternative remains. Much work in computational social choice

investigates how much power a tournament organizer has over

who wins by selecting the seeding, the permutation of the players

for the first round. This is given more formally as the Tournament

Fixing Problem (TFP) with input (i∗, P ,δ ), where δ ∈ [0, 1], i∗ ∈ [n]
is a “favorite” player and P is an n × n matrix where the entry Pi, j
gives the probability that player i beats player j. TFP asks whether

a self-interested organizer can select a seeding s for which i∗ wins
the balanced knockout tournament with probability at least δ .

In its general form, TFP has been known to be NP-complete

for over a decade ([8]). Several restricted versions of TFP (such

as the deterministic case) are also known to be NP-hard [2], and

some recent works have tested this hardness result empirically

with real-world data [10] [11]. Others have worked to formulate

the complexity of certain versions using FPT algorithms [4] [1].
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In this paper we consider the TFP problem when the tournament

organizer can bribe players, and P is deterministic or ε−monotonic:
the players are ordered from 1 (the strongest) to n (the weakest),

and for every i and j, Pi, j ≥ Pi, j−1 − ε ; 0-monotonic is just called

monotonic. Notions of bribery in knockout tournaments have been

studied before, e.g. by [5], [7], [9], and [12]. Our work extends what

is known in novel ways.

1.1 Our Results
We first formulate a new bribery version of TFP called BTFP, ex-

tending a notion from [7]. Generally, to show that BTFP isNP-hard,
we reduce TFP to it [15]. This does not work when P is monotonic

because TFP is not known to be NP-hard in that case. We show

that BTFP is NP-complete even when P is monotonic using a new

reduction where each entry of the post-bribery matrix P ′ differs
from the corresponding entry in P by no more than an arbitrary

small constant ε > 0, which allows the manipulator performing the

bribes to eschew getting caught.

Next, we consider the case where for every pair of players i
and j, Pi j ∈ {0, 1}. Bribery problems for deterministic P have been

proposed in the past. [12] and [5] incorporated bribery into the

simpler problem of modifying a winning seeding, and [7] bounded

the number of players that can be bribed from above to show that

a special case of BTFP is NP-hard. We want to bribe better so that

(1) the post-bribery matrix does not depend heavily on the initial

seeding or favorite player, and therefore does not look suspicious;

(2) we do not have to re-bribe if we pick a new favorite player;

and (3) our input matrix P is more realistic, with stronger players

generally beating weaker ones. We consider matrices P generated

by a natural model proposed by a Condorcet. We show that for

almost all such matrices, the top O(logn) players can always be

bribed to throw certain matches so that any player can win.

2 BRIBERY MODEL
We define a model for bribing players competing in a balanced

knockout tournamentKT . It is assumed that for any pairwise match,

the probability of one player winning against the other is known,

regardless of whether or not a bribe was made. We are given the

following as inputs: a set of players S = [n]; a probabilistic pairwise
comparison matrix P ; a matrix A ∈ Qn×n

[0,1]
where Ai, j denotes the

probability that row player i will beat column player j in a match

that j has been bribed to throw, and for all (i, j), 1 ≥ Ai, j ≥ Pi, j ;

a cost matrix C ∈ Z(n×n) where Ci, j denotes the cost of bribing
column player j to throw thematch to row player i; a budget B ∈ Z+,
the total amount that can be spent on bribing players; a favorite

player v∗ ∈ S ; and a threshold probability δ ∈ Q[0,1].
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Table 1: (a) On the left is matrix P . (b) On the right is the resulting matrix P ′ post-bribery. The bribes are indicated by the colored cells

With this model, we define the tournament fixing problem with
bribery (BTFP): “Given S, P ,C,A,B,v∗, and δ , is there a seeding for a
balanced single-elimination tournamentKT so thatv∗ will win with
probability ≥ δ if we bribe players according toC without exceeding

B?" We consider two cases of this problem: one with monotonic P ,
and one with deterministic P and A, and where ∀(i, j),Ai, j = 1 and

Ci, j = 1.

3 HARDNESS PROOF
We state and prove the complexity of BTFP. It is not hard to

show NP-completeness when P is ϵ-monotonic. Set A = P , B = 0,

andC = 0. This turns BTFP into an instance of TFP, which has been
proven to be NP-complete when P is ϵ-monotonic ([15]). However,

since the hardness of TFP given monotonic P is still open, we give a

new reduction to show that BTFP isNP-complete in the case where

P is monotonic and the matrix P ′ after bribery is ϵ-monotonic.

Theorem 3.1. BTFP is NP-complete even if P is monotonic and
the matrix P ′ after bribery is ϵ-monotonic.

Proof. It is easy to see that BTFP ∈ NP. To prove that BTFP is

NP-hard, we reduce from VERTEX-COVER: "Given a graph G =
(V ,E) and k ∈ Z, is there a subset V ′ ∈ V such that |V ′ | ≤ k
and V ′

covers E?" We show that one can choose an initial seeding

for a tournament KT with players that must be bribed so that a

special player v∗ will always win if and only if G has a vertex

cover of size at least k . Our proof is based on past work proving

that TFP is NP-complete when P is ϵ-monotonic by reducing from

VERTEX-COVER ([15]).

Given an instance (G,k) of VERTEX-COVER, we construct an
instance of BTFP with the following players: (1) vertex players

{vi ∈ V }, and an extra player v0 < V , which does not cover any

edges; (2) a favorite player v∗ < V ; (3) edge players {ei ∈ E}; (4) a
filler player { f rvi } for each vertex playervi ∈ V∪{v∗,v0} and round
0 < r ≤ ⌈log(|V | − k)⌉; (5) a filler player { f rei } for each ei ∈ E and

round r such that ⌈log(|V | − k)⌉ < r ≤ ⌈log(|V | − k)⌉ + ⌈log(|E |)⌉;

(6) 2
⌈log( |V |−k )⌉ − 1 holder players htei for each edge player ei ; (7)

2
r − 1 holder players htf ri

for each filler player f ri placed at round

r ; and (8) 2
N − 1 holder players ht∗ for v

∗
where N = ⌈log(|V | −

k)⌉ + ⌈log(|E |)⌉ + ⌈log(k + 1)⌉ + 1.
Let P be as in Table 1a, and let A be the matrix that is the same

as P ′ in Table 1b above the diagonal, and P below the diagonal. Set

B to be |V |2. For each pair (i, j) if i < j and Pi, j , P ′i, j , set the cost

Ci, j = 1; otherwise set Ci, j = B + 1. If all bribes indicated in the

colored cells are made, P ′ is an ϵ-monotonic matrix of winning

probabilities and matches the matrix obtained in [15]. In the full

version, we prove thatv∗ can win with probability 1 iff these bribes

are made and there exists a vertex cover of size k in G. □

4 BRIBING A FEW TOP PLAYERS SUFFICES
We consider a simple deterministic version of BTFP: Given a

probability matrix T (Ti, j = 1 −Tj,i ,Ti, j ∈ {0, 1},∀i, j ∈ [n]) and a

favorite player v∗, we want to bribe a small number of players to

each lose a single match, at cost 1 each, and to find a seeding for

whichv∗ wins.T is generated by the Condorcet Random model (CR

Model). Given a probability p ≤ 1/2, an n ×n matrixT is generated

for the players {1, . . . ,n} so that for all i < j , independently,Ti, j = 1

with probability 1−p andTi, j = 0with probability p ([3]; [14]; [13];

[6]). Intuitively, this means that a stronger player beats a weaker

player except with small probability p. Our main theorem is

Theorem 4.1. Let n be a power of 2, c > 1, let p ≤ 1/2 be arbitrary,
and let R ≈ 5.92. Then, for at least a 1− 1/nc−1 fraction of all n×n T
generated by the CR model with probability p, and any player v∗, if
one bribes players 1, . . . ,Rc logn to lose to v∗, there is an efficiently
constructible seeding for which v∗ wins.

We show that for v∗ = n, if we bribe players 1, . . . , 6c logn to

lose to v∗, then v∗ fulfills the conditions of the following theorem
with probability at least 1 − 1/nc−1 [6].

Theorem 4.2. Consider a tournament graph T on n players V
where K ∈ V is a king. Let A = Nout (K) and B = V \ (A ∪ {K}) =

Nin (K). Suppose that B is a disjoint union of three (possibly empty)
sets H , I , J such that (1) |H | < |A|, (2) inA(i) ≥ logn for all i ∈ I ,
and (3) out(j) ≤ |A| for all j ∈ J . Then there exists an efficiently
computable winning seeding for K .

The full proof shows that for any player v∗, if we bribe play-
ers [1, , 6c logn] to lose to v∗, the conditions of Theorem 4.2 are

met with probability at least 1 − 1/nc−1. In particular, we prove

the second condition of Theorem 4.2 using a union bound and

a Chernoff-based concentration bound for the sum of Bernoulli

random variables.

5 CONCLUSIONS AND FUTUREWORK
We proved that fixing a knockout tournament with monotonic P

using bribery is NP-complete. The problem of fixing a tournament

with monotonic P without bribery is still open. We also proved that

a knockout tournament described by the CR model almost always

has an optimally small set of players that can be bribed. Possible

future work includes using the size of this set to parameterizeBTFP.
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