
Multi-agent Path Planning with Non-constant Velocity Motion
Extended Abstract

Ngai Meng Kou, Cheng Peng, Xiaowei Yan, Zhiyuan Yang, Heng Liu, Kai Zhou, Haibing Zhao,
Lijun Zhu, Yinghui Xu

Cainiao Smart Logistics Network
ngaimeng.knm,junpeng.pc,xiaowei.yanxw,shiyuan.yzy,hengsu.lh,jizhou.zk,haibing.zhb,yuanxiang.zlj,renji.xyh

@alibaba-inc.com

ABSTRACT
Multi-agent path planning has wide application in fields such as
robotics, transportation, logistics, computer games, etc.. To formu-
late the multi-agent path finding as a concisely discretized problem,
most of the previous works did not construct a detailed motion
model of each agent. While many elegant algorithms were proposed
in the literature, a method to efficiently plan the paths for multi
agents with non-constant velocity is still lacking. In this paper,
we propose two methods CRISE and COB to extend the existing
algorithms for non-constant velocity motion path planning.

ACM Reference Format:
Ngai Meng Kou, Cheng Peng, Xiaowei Yan, Zhiyuan Yang, Heng Liu, Kai
Zhou, Haibing Zhao, Lijun Zhu, Yinghui Xu. 2019. Multi-agent Path Plan-
ning with Non-constant Velocity Motion. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
To formulate the multi-agent path planning as a concise problem,
traditional methods neglect the motion model of the agents and gen-
erate discretized path plans [2, 5], and is generally referred asmulti-
agent path finding (MAPF) problem. Therefore post-processing is
necessary for these methods to avoid collisions between the re-
sult paths. Hönig et al. proposed an approach to convert imperfect
discretized path plans into feasible plan-execution schedules [3].
However, it does not consider kinematic constraints in the pro-
cess directly, which affects the planned path quality. In addition,
it assumes an unrealistic dynamics of the agent with infinite ac-
celeration (uniform velocity model), which is not suitable for en-
vironments where the grid length is small or comparable to the
acceleration distance of the agent. Some other work formulates the
problem as kinodynamic path planning and computes the path di-
rectly according to the agent actions [1, 9]. While these methods can
return optimal paths, the extremely high computation cost limits
the applicability in industry. Recently, [4] proposed modified path
planning algorithms based on state-of-the-art MAPF algorithms
with similar motivation. But it considered a different problem with
discrete waiting time. Our work adopted different mechanisms in
state expansion during the path planning search process, both for
single and multi agent scenarios. Equipped with the new mecha-
nisms, we can modify many previous MAPF algorithms to take into
account agents’ motion models.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2 PRELIMINARY AND METHODOLOGY
We formulate Non-constant Velocity Network (NVN) to consider the
physical movement into the graph structure. Let G(E,U,w,θ) be
an NVN with a set of edges E = {e1, · · · , em } and a set of vertices
U = {u1, · · · ,un }. The weight of an edge e isw(e) and the direction
of e is a unit vector θ (e). Given a set of agents A = {a1, · · · ,ak },
MAPF is to find a path pi = (si , · · · ,дi) for each agent ai from its
start vertex si to its target vertex дi without collision with other
agents and minimize the cumulative time cost of the paths1. An
agent moves on its path with a motion model and three types of
actions:

(1) Move: For a straight path p = (ui , · · · ,uj),move(p) let an at
rest agent move from ui and stop at uj with minimum time.

(2) Turn: An action turn(θi ,θ j) let an agent do a spin turning
on current vertex to change its heading from θi to θ j .

(3) Rest: ∀τi ∈ R+, an action rest(τi ,τj) let an agent stay at rest
on current vertex for the time period [τi ,τj).

We introduce critical state expansion (CRISE) and Continuous
branching (COB) for single agent shortest path planning with static
and dynamic obstacles, which can be extended to support MAPF.

2.1 Critical State Expansion

(a) Neighborhood expansion (b) Line expansion

Figure 1: Difference between NE and LE. The bold circle u1 is
the current vertex. The expansion go through the thick edges and
pushes gray vertices into OPEN. The light edges are ignored.

To finding the shortest path in NVN, the state of an agent can be
represented by a three dimensional tuple ⟨u,θ ,v⟩ where u, θ and v
are its current position, direction and velocity, respectively. This
is an observation that the states with zero velocity are critical in
the search. So we propose line expansion (LE) which can reduce
the state space from three dimensions ⟨u,θ ,v⟩ to two dimensions
⟨u,θ⟩ by only considering the critical states.

Definition 2.1 (Critical state). A state is critical if v = 0.

1A collision occurs if two agents meet in the same vertex or edge.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2069

To pass a path p as soon as possible, the agent should decelerate
as late as it should stop (as acceleration takes time). It is unnecessary
to store all the possible state passing a vertex but the state stops
on it. The states of intermediate vertices can be easily inferred
accordingly. Only considering the zero-velocity states for every
vertices that the agent stops on is sufficient to reform the shortest
path.

CRISE is based on this intuition and generates the critical states
by LE. The procedure of CRISE is similar to A*. In each iteration,
CRISE pops a state ⟨ui ,θi ⟩ from OPEN with minimum cost τi for
expansion until дi is popped or OPEN is empty. Instead of the
neighbors, LE considers every reachable vertex uj of current vertex
ui by a turning followed by a straight line movement (ui , · · · ,uj)
(see Figure 1). For each vertex uj , a successor state ⟨uj ,θ j ⟩ with
cost τ (uj) is generated where θ j is the arrival direction and τ (uj) =
τ (ui) + turn(θi ,θ j) +move((ui , · · · ,uj)) is the arrival time. These
states are inserted into OPEN. Then CRISE starts next iteration.

2.2 Continues Branching
We then consider finding the path in continuous time space with
dynamic obstacles and arbitrary waiting time. To avoid collisions,
the occupied intervals of vertices are stored in a reservation table.

Definition 2.2 (Reservation table (RT)). A RT is a set to maintain
the reserved interval of each vertex. RT(u) = {[τ1,τ2), · · · [τi ,τi+1)}
is the set of the reserved time intervals of vertex v .

Given an RT, the challenging is how to do branching in a contin-
uous time-space and how long an agent should wait on its vertex.
COB considers reachable vertices U ′ by LE of any state ⟨u,θ⟩ in
OPEN. For everyu ′ ∈ U ′, it computes the feasible start time periods
from u to u ′ such that for any vertex ui in the straight line move-
ment p = {u, · · · ,u ′}, a does not occupy any time in RT(ui) when
it passes ui . This is done by two steps: projection and branching. We
define four special time points, Start time, Touch time, Departure
time, Arrival time, as shown in Figure 2, which are thoroughly used.

Start time
(turning starts)

Touch time
(front end enters)

Departure time
(back end leaves)

Arrival time
(fully stops)

Turn

Figure 2: A movement from vertex u to another vertex u ′ in
the same line, which contains two actions turn andmove.

Projection: As shown in Figure 3, every reserved time period in
RT(ui) will cause some start times to become unfeasible. Projection
is to compute the corresponding unavailable start time period. Sup-
pose [τl ,τr) is a reserved time period of ui . Let the time difference
between the touch time and the departure time of ui be denoted by
τ∆1, which can be computed based on the shapes of a andu, and the
motion model. Obviously, a cannot touch ui in [τl −τ∆1,τr). Projec-
tion shifts this time period to the unavailable start time period of u.
Let τi be the touch time ofui and τ be its corresponding start time at

u. The turning and moving time τ∆2 = τi −τ fromu toui can be cal-
culated based on the motion model of a. The unavailable start time
period of u is project(u,u ′,ui ,a, [τl ,τr)) = [τl −τ∆1 −τ∆2,τr −τ∆2).

Start time
(turning starts)

Touch time
(front end enters)

Departure time
(back end leaves)

Arrival time
(fully stops)

Corresponding
unavailable start time

Turn

Figure 3: Projection computes the infeasible start time inter-
vals of vertex u by shifting the reserved time intervals of ui .

Branching: For an agent at u, suppose the earliest and the latest
start times are τ1 and τ2. The set of available start time periods is

wait(u,u ′,τ1,τ2) = [τ1,τ2) \

(⋃
ui ∈p,[τl ,τr)∈RT(ui)

project (u,u ′,ui ,a, [τl ,τr))

)
.

To search in the time-space, every available start time period should
be considered as a state. COB branches the search into each disjoint
period [τj1,τj2) of wait(u,u ′,τ1,τ2).

The framework of COB is similar to A* algorithm. In each it-
eration, a state ⟨u,θ , [τl ,τr)⟩ is popped from OPEN list, a priority
queuemaintaining theminimum cost state. COB retrieves reachable
vertices U ′ by line expansion. Consider one of the vertex u ′ ∈ U ′.
A set of available start time periods from u to u ′ can be computed
by projection and branching. For each available start time period
[τ ′l ,τ

′
r), COB generates a corresponding state ⟨u ′,θ ′, [τ ′l ,τ

′
r)⟩ with

cost τ ′l +h(u
′), whereu ′ is the vertex, θ ′ is the arrival direction, and

h(u ′) is a consistent heuristic function returning an approximate
cost from u ′ to target vertex. These states are inserted into OPEN
list.

Based on CRISE and COB, LRA* [10] and WHCA* [7] can be di-
rectly extended to CRISE-LRA* and COB-WHCA* to support motion
models and solve MAPF in NVN.

3 EXPERIMENTS

Figure 4: Evaluation results on DAO den900d (128 × 128)

We followed the setting of previous papers [3, 6, 7]. and evaluated
the performance of the proposed methods in a benchmark map of
the game Dragon Age: Origin (DAO) [8]. We also implemented the
post-pocessing MAPF-POST [3] combining with WHCA* (WHCA*-
POST in the figures). We report the average travel time of the agents
(objective function), success ratio (the percentage of agents reached
their targets) and running time (computation cost) of each method.

As shown in Figure 4, although we give an advantage toWHCA*-
POST that agents move with maximum velocity, COB-WHCA* and
CRISE-LRA* still have shorter travel time because they consider the
information of NVN directly in the path planning. COB-WHCA* has
lower success ratio because the effect of line expansion on success
ratio is similar to a very large window size in WHCA*.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2070

REFERENCES
[1] Marcello Cirillo, Tansel Uras, and Sven Koenig. 2014. A lattice-based approach

to multi-robot motion planning for non-holonomic vehicles. In 2014 IEEE/RSJ
IROS 2014, Chicago, IL, USA, September 14-18, 2014. 232–239. https://doi.org/10.
1109/IROS.2014.6942566

[2] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg,
Guni Sharon, Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek. 2017.
Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Sum-
mary and Challenges. In Proceedings of SOCS 2017, 16-17 June 2017, Pittsburgh,
Pennsylvania, USA. 29–37. https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/
view/15781

[3] Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora
Ayanian, and Sven Koenig. 2016. Multi-Agent Path Finding with Kinematic
Constraints. In ICAPS. 477–485.

[4] Marius Merschformann, Lin Xie, and Daniel Erdmann. 2017. Path plan-
ning for Robotic Mobile Fulfillment Systems. CoRR abs/1706.09347 (2017).

arXiv:1706.09347 http://arxiv.org/abs/1706.09347
[5] Mike Phillips and Maxim Likhachev. 2011. SIPP: Safe interval path planning for

dynamic environments. In ICRA 2011, Shanghai, China, 9-13 May 2011. 5628–5635.
https://doi.org/10.1109/ICRA.2011.5980306

[6] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence 219, C
(2015), 40–66.

[7] David Silver. 2005. Cooperative pathfinding. In AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment. Marina Del Rey, 117–122.

[8] N. Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding. Transactions
on Computational Intelligence and AI in Games 4, 2 (2012), 144 – 148. http:
//web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

[9] Glenn Wagner, Howie Choset, and Avinash Siravuru. 2016. Multirobot sequential
composition. In IROS 2016, Daejeon, South Korea, October 9-14, 2016. 2081–2088.
https://doi.org/10.1109/IROS.2016.7759327

[10] Alexander Zelinsky. 1992. A mobile robot exploration algorithm. IEEE Trans.
Robotics and Automation 8, 6 (1992), 707–717. https://doi.org/10.1109/70.182671

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2071

https://doi.org/10.1109/IROS.2014.6942566
https://doi.org/10.1109/IROS.2014.6942566
https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781
https://aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781
http://arxiv.org/abs/1706.09347
http://arxiv.org/abs/1706.09347
https://doi.org/10.1109/ICRA.2011.5980306
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
https://doi.org/10.1109/IROS.2016.7759327
https://doi.org/10.1109/70.182671

	Abstract
	1 Introduction
	2 Preliminary and Methodology
	2.1 Critical State Expansion
	2.2 Continues Branching

	3 Experiments
	References

