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ABSTRACT
We describe a hierarchical belief space planning framework to
achieve robust long-term autonomous mobile manipulation behav-
ior under uncertainty. The approach relies on condensing belief
distributions across different abstractions to simultaneously sup-
press uncertainty and mitigate risk at run-time. We evaluate this
system in an experimental domain that requires a robot to mon-
itor and clean a dynamic unstructured environment, executing
hundreds of physical actions without failures that require human
intervention. Results indicate that this framework provides a sound
basis for cognitive robots in uncertain and dynamic environments.
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1 INTRODUCTION AND BACKGROUND
Despite advances in manipulation, locomotion, and perception, re-
sults from recent robot challenges indicate that robots that are
competent in unstructured (open) environments remains an elu-
sive goal [5, 9]. This is due to uncertainty present in unstructured
environments, sensing, and actuation. Developing planning and
execution frameworks able to make effective decisions while over-
coming uncertainty and managing risk is, therefore, a major goal
of robotics. Research in Long-Term Autonomy (LTA) focuses on
developing technologies to address problems introduced by open
worlds [12]. Open worlds are defined by a lack of structure, partial
observability, and complex dynamic environments.

Generally speaking, studies in LTA do not address challenges
that arise when the robot intentionally alters the environment.
The best examples of long-term deployments of semi-autonomous
mobile manipulators and the issues they encounter are the systems
deployed at the DARPA Robotics Challenge. These systems often
experienced failures that required external interventions within
tens of actions due to a low mean-time between decision making
failures [9]. In this work, we view “long-term deployments" as
autonomous deployments that last on the order of hours during
which 100s of decisions about actions that intentionally alter the
environment are executed.
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Decision making under uncertainty falls into a class of prob-
lems known as Partially Observable Markov Decision Processes
(POMDP) [7]. Finding optimal solutions to POMDPs is PSPACE com-
plete, so researchers have developed a variety of approximate tech-
niques. A common technique is to plan in belief space, where instead
of reasoning over the states themselves, reasoning is performed
on the probability distribution defined over the states [6, 8, 15–
17]. Lanighan et al. demonstrated simple assembly tasks that are
robust to perceptual and motor uncertainty using a hierarchy of
Active Belief Planners [13]. With this approach a robot is able to
manage stochastic actions in partially observable systems to avoid
unrecoverable outcome states (that require external intervention).
Such a system supports robust and reliable autonomous systems.
In this abstract, we summarize preliminary work on evaluating the
performance of long-term, autonomous deployments by measuring
the number of actions between unrecoverable decision failures.

2 HIERARCHICAL ACTIVE BELIEF
We build upon the work of Lanighan et al. [13], using an approach
that decomposes a task into multiple belief spaces where belief in
lower levels informs decision making at higher levels. Each planner
is defined by the set S of world states, the conditional transition
probability T between states, an observation function O , the set
of available actions A, the belief distribution bk over states ∈ S
at time k , a reward function r (bk ,A) → R parameterized by the
belief distribution and actions, and a state abstraction function
Z (bi ) → z, where bi is the belief of the preceding level. Z allows
higher levels of the hierarchy to form observations from lower level
belief distributions, causing information to stabilize as it progresses
up the hierarchy.

In this work, we introduce a hierarchy of three levels to control
uncertainty in the environment, over object identities, and task
geometry. We accomplish this through an environmental level, an
intra-object level, and an inter-object levels. Each level evaluates
uncertainty present in its state and selects actions to manage un-
certainty. Belief states at each level are maintained by recursive
Bayesian filtering.

The environmental level activelymanages uncertainty in the large
scale, volumetric occupancy of space surrounding the robot. Gross
and fine motor actions produce autonomous mobile manipulation
strategies to actively manage uncertainty and risk by interacting
with the unstructured environment in response to visual and tactile
observations. The environmental level implemented in this work
respectively considers trajectories that re-position the mobile base
of the robot. To generate trajectories, a harmonic function path
planner [3, 4] is used to find collision-free trajectories while simul-
taneously reducing uncertainty by optimizing information gain.
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The intra-object level of the three-level hierarchy manages belief
over identities of objects in the environment relative to a set of
object models. Objects are modeled using Aspect Transition Graphs
(ATGs), a multi-graph that describes how actions create changes
between multi-modal constellations of observable features (aspects)
of an object [10, 16]. Belief distributions are instantiated using a
state abstraction functionZ that samples belief of spatial occupancy
from the environmental level. A generalized Hough transform [1]
computes observation probabilities to known models. To control
uncertainty among the object models, sensorimotor actions are
selected to change the object-robot relationship in order tominimize
the future expected entropy of the belief distribution.

The inter-object level of the hierarchy manages uncertainty in
spatial precision of the task with regard to relative position of mul-
tiple objects. The state abstraction function samples the maximum
likelihood state of the intra-object level distribution to “observe"
the expected positions of objects that are relevant to the task at
hand. This level recommends pick and place actions that rearrange
objects in the environment relative to each other such that they
maximize a reward function. Kullback-Leibler divergence DKL [11]
between the current belief distribution of the inter-object level, b2,
and a goal distribution, G, is used in this work.

To determine control authority in the hierarchy we introduce a
belief subsumption arbitration mechanism inspired by subsumption
architectures [2]. In the hierarchy, decisions at the higher levels
are only informative given that lower level beliefs are confident.
The highest-level planner with enough confidence in its state is
chosen for execution. Authority for action at any level depends on
avoiding unrecoverable states. The highest-level that can guarantee
safe and productive future states is selected. In this way, belief
actively condenses in the hierarchy from the bottom-up.

3 EVALUATION CRITERIA AND RESULTS
To test the system’s capability for long term autonomy, we propose
a set of mobile manipulation scenarios with the uBot-6 mobile
manipulator [14] in unstructured environments where the robot
must “tidy-up" a room. This scenario is analogous to tasks like
clearing tables that is suited to our platform. In the scenario, the
robot must search a room, identify objects that are out of place,
and return them to a pre-specified position. During execution the
object may be re-oriented or re-placed by a disruptive external
agent. The robot must adapt to these perturbations and avoid states
that lead probabilistically to future unrecoverable failure states. The
approach is evaluated in terms of the number and frequency of
external resets over several such deployments.

The robot was deployed in the evaluation environment for over
four hours. Deploymentswere interruptedwhen the batteries dropped
to unsafe levels or when external resets were required. The deploy-
ments are summarized in Table 1. The robot successfully put the
target object away and never “put-away" a non-target/distractor
object during the deployments. The robot encountered nine failures
that required interventions during the deployments. Two failures
were due to system-level (hardware) failures. The remaining fail-
ures occurred while manipulating objects in the environment as
prescribed by the intra-object level. According to the belief state at
the time of these failures, these were legal actions. However, due

to uncertainties in the underlying controllers these actions failed
during execution. This type of error is attributed to inadequate
precision in the empirical object models and, thus, a compromised
ability to predict future states.

# Duration (h:m:s) Actions Failures Interactions
1 1:18:29 37 2 5
2 0:41:54 28 2 4
3 0:16:40 12 2 2
4 0:02:20 2 1 0
5 0:32:23 19 0 5
6 0:45:47 29 1 7
7 0:48:05 27 1 12

Total 4:23:28 154 9 37
Table 1: Run time, number of actions executed, number of
failures, and the number of interactions per deployment.

During the seven deployments, the experimenter perturbed ex-
perimental objects in the middle of execution a total of 37 times.
These interactions re-positioned and re-oriented objects in the
environment, and/or inserted or removed distractor or target ob-
jects. A single failure attributable to such a disturbance occurred
in the first deployment. The cause of the failure was an erroneous
implementation of the state abstraction function between the envi-
ronmental and intra-object levels. Due to an implementation error,
although the environmental level belief provided little support for
volumetric occupancy, the intra-object level belief was not correctly
updated. This caused the robot to grasp empty space, which re-
quired intervention to correct. This implementation error was fixed
in subsequent deployments. This failure highlights the impact that
a correctly implemented hierarchy has in such situations—the ro-
bot avoids executing actions that are not supported by history and
observation.

4 DISCUSSION
The hierarchy demonstrated in these deployments commits to con-
trol decisions only when belief in the various levels of abstraction
have stabilized. By selecting which level of the hierarchy possesses
control authority through belief subsumption, the system is able to
manage uncertainty across the levels of the hierarchy. As result, the
robot uses the three-level active belief hierarchy to interact with the
unstructured domain within constraints derived from uncertainty
in spatial occupancy, object identity, and inter-object precision and
actively gathers information to meet safety and performance speci-
fications. Despite repeated attempts by experimenters to frustrate
the robot, it completed the specified ‘tidy-task’ over deployments
lasting hours during which over 150 actions were executed. During
these deployments nine failures requiring external interventions
occurred. Although more experience with such an architecture
and more experimental data is required, these preliminary results
suggest that this kind of architecture—one that actively shapes
posterior belief in hierarchically arranged planners across multi-
ple levels of abstraction—can be an effective approach to systems
that must accommodate extended periods of deployment with no
human intervention.
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