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ABSTRACT
Reinforcement learning methods such as AlphaZero have achieved
super-human performance in adversarial games by training in a
self-play manner. However, they generally require a large amount
of computational resources to search for an (approximately) opti-
mal policy in the joint state-action space involving both players
and the environment. To accelerate the exploration process, we
propose a new paradigm of “learning by playing” by considering
the scenarios where expert opponents are accessible. By observing
the opponent actions, the agent accelerates exploration by assign-
ing more searching sources in these actions. To alleviate the sparse
reward issue when facing the expert opponent at the beginning,
we technically propose a novel method called Ladder Opponent
Modeling (LOM), which builds a ladder opponent to facilitate the
learning process. The agent plays with both the expert and ladder
alternatively with its competence improved gradually. The online
manner of the ladder opponent generates auxiliary tasks gradually,
yielding a tractable improvement for the agent.
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1 INTRODUCTION
Two-player zero-sum games concern the tasks where two agents
are involved and each tries to maximize its own reward. Since
opposite rewards are given to each agent, an adversarial property
exits. Many practical problems such as board games, competitive
sports or some economic problems fall into this category. Our goal
is to identify a policy for one of the player that performs well
against any other opponent. In the adversarial two-player games,
the target to find a policy that can gain good rewards universally
requires taking the other player into consideration and searching
in the joint state-action space. The joint space is much larger than
that for a single agent and it is non-trivial to implement efficient
exploration in such a space.
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The state-of-the-art work AlphaZero [10] on board games works
in a self-play manner. It trains policies for both players and let
them play with each other until reaching well-performing policies.
However, the searching in the joint policy space requires a huge
amount of resources. For instance, AlphaZero used over 5000 TPUs
to train board games. A potential way to accelerate the process is to
learn the policy by mimicking a given expert player with imitation
learning [7, 12], which is considered as “learning by watching”.
However, in practice, it may accumulate learning errors between
the policies of experts and learners, resulting in poor performance
especially in the scenario of sequential decision making.

In many practical scenarios, an expert opponent is accessible
which allows our agent to play with it repeatedly. For example, a
dealer in a casino and an attacker in network security [5] can be
both considered as expert opponents. Notice that the expert oppo-
nent refers to an expert taking the role of the opponent, which is
different from the expert in imitation learning. Intuitively, the given
opponent can guide the agent to explore the states that are probable
to meet in the face of other powerful opponents, making the agent
improve its policy more efficiently. In this paper, we propose a new
paradigm named “learning by playing”, which encourages the agent
to learn via playing with an accessible expert opponent. However,
the key challenge for this paradigm is that is a beginner agent can
hardly defeat the expert opponent, which makes it difficult for the
agent to obtain meaningful rewards to improve its policy.

To address this challenge, we propose a novel method named
Ladder Opponent Modeling (LOM).We introduce a ladder opponent
to help the agent gain gradual improvement. In the training process,
the agent updates its policy by playing with the expert opponent
and the ladder opponent alternatively until convergence. When
the agent plays with the expert opponent, the ladder opponent
observes the behavior of the expert opponent and imitates the
expert behavior. Since the ladder opponent is trained online, its
policy is weak initially and gradually gets close to the opponent
as more games are observed and played. When playing with the
ladder opponent, the agent can gain positive rewards with higher
probability, which alleviates the sparse-reward challenge.

Our work can be categorized from the perspective of “curriculum
learning” [1, 4], which learns a set of increasingly more complicated
auxiliary tasks gradually, yielding an effective performance in nu-
merous scenarios. However, it is nontrivial to design the curriculum
automatically, especially for the adversarial tasks. Our proposed
LOM provides a method to generate the auxiliary tasks automati-
cally which gradually becomes more complicated online.
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Figure 1: Configuration of training process for the proposed
LOMmethod

2 PRELIMINARIES
Markov decision process (MDP) is a general framework in RL de-
fined with a tupleM = ⟨S,A,P,R,γ ⟩, where S and A respectively
denote the state and action spaces, P : S ×A × S → R denotes the
state transition probability, R : S ×A→ R is the reward function,
and γ ∈ (0, 1] is a discounting factor. A policy π maps every state
s ∈ S to a distribution over the action set A.

In a two-player zero-sum extensive game with perfect informa-
tion [6], an agent is solving an MDP once its opponent uses a fixed
policy. More formally, each player Pi (i ∈ {1, 2}) has its state space
Si , action space Ai and reward function Ri . Specifically, R1 = −R2
and Ri (s) = 0 unless s is a terminal state. Denote πi as the pol-
icy for Pi and ∆i as the set of all πi . When Player P{1,2}\i fixes
its policy π{1,2}\i , Pi is solving an MDP Mi = ⟨Si ,Ai ,Pi ,Ri ,γ ⟩
where Pi = π{1,2}\i and γ = 1. Then we can define the expected
reward for player i against the other player when their policy tuple
is (π1,π2) as:

ui (π1,π2) := Eπ1,π2

[ T∑
t=0
Ri (st )

]
. (1)

We can train both agents to maximize their own rewards in the
self-play paradigm [2, 10, 11]. Although they are probable to reach
near-optimal policy, these methods are computationally inefficient
because they need to explore the policy space for both players.

We can apply imitation learning to solve these games if super-
vised information is given [7, 12]. Imitation learning can accelerate
learning, but it can result in error accumulation [3, 8, 9].

3 LADDER OPPONENT MODELING
In our “learning by playing” paradigm, we consider the game that
an expert opponent is given. For convenience, our agent takes the
role of P1 and the given opponent takes P2. Denote the policy of the
opponent to be πo . Intuitively, we aim to solve max

π a ∈∆1
u1(πa ,πo ).

The main problem for this problem formulation is that general RL
methods are hard to improve since an expert πo leads to sparse
positive rewards. A further issue is that the solution are not ensured
to perform well against other opponents.

To address the main issue, we introduce a ladder opponent to help
the agent to improve. Since ui is assumed to be bounded, u1(π1,π2)
is a L-Lipschitz function on either π1 or π2, where L can be large.
Thus for any π ′2 ∈ ∆2, |u1(π1,π2)−u1(π1,π ′2)| ≤ L∗d(π2,π ′2). Then

we have

u1(π
a ,πo ) ≤ u1(π

a ,π ℓ) + L ∗ d(π ℓ ,πo ). (2)

This upper bound equals to the original function when π ℓ = πo .
Hence, we turn to optimize

max
π a ∈∆1

min
π ℓ ∈∆2

u1(π
a ,π ℓ) + L ∗ d(π ℓ ,πo ). (3)

Notice that an expert opponent should be powerful. The first term
above is likely to decrease as π ℓ gets close to πo . Hence we change
the second term into a constraint. Since we can only observe actions
chosen from πo , the distance can only be computed on the observed
data. Then we give an approximation to problem (3)

max
π a ∈∆1

min
π ℓ ∈∆2

u1(π
a ,π ℓ), s .t . d(π ℓ ,πo )obs < δ , (4)

where d(π ℓ ,πo )obs denotes the empirical divergence between π ℓ

and πo on the observed part of πo .
Optimizing problem (4) leads to our method Ladder Opponent

Modeling (LOM). As shown in Fig. 1, the agent first plays with the
expert opponent, and then the ladder opponent tries to satisfy the
constraint with the observation data from πo . Then the agent plays
with the ladder opponent then to optimize the objective function.
We give the algorithm in Alg. 1.

LOM can solve the sparse reward issue. The ladder opponent is
weak at the beginning of training and the process that the agent
plays with the opponent model and the ladder opponent alternatively
can improve both the agent and the ladder gradually. As a byproduct,
the games played by the agent and ladder can help the learned policy
to be robust against other opponents.

Algorithm 1 Ladder Opponent Modeling

Initialization: Initialize π ℓ , πa , Dℓ = ∅,m1 andm2.
repeat

for t = 1 tom1 do
The agent uses πa and π ℓ to search and uses the searching
result to play with the expert opponent.
For (s,a) played by the expert opponent, Dℓ = Dℓ ∪ {(s,a)}.

end for
π ℓ ← argminπ2∈∆2 d(π

o ,π2)Dℓ

Update πa with the searching results
for t = 1 tom2 do

The agent and the ladder opponent use πa and π ℓ to search
and use the searching results to choose actions.

end for
Update πa and π ℓ with the searching results.

until Convergence
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