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ABSTRACT
Exploration is a task in which autonomous mobile robots incre-
mentally discover features of interest in initially unknown envi-
ronments. Most of the current exploration approaches ignore prior
knowledge about the environments that have to be explored. How-
ever, in some practical cases, such knowledge could be available. In
this paper, we present a method that includes a priori knowledge
in an exploration strategy that selects the next best locations the
robot should reach in partially explored indoor environments by
exploiting the (possibly inaccurate) knowledge of their� oor plans.
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1 INTRODUCTION
Exploration is an important task for autonomous robotics, in which
mobile robots have to incrementally discover features of inter-
est by moving in initially unknown (or partially known) environ-
ments [3, 6]. We consider the problem of exploring for map build-
ing [8], in which the goal of a robot is to move in an initially
unknown environment in order to build a map representing the
locations of obstacles and the free space. The robot follows an ex-
ploration strategy to select the next best locations to reach in the
partially explored environment [2, 4]. Most of the current explo-
ration strategies ignore prior knowledge about the environment to
explore that, in some cases, could be available. One of the few ex-
ceptions is [7], which shows that using accurate a priori knowledge
has a positive impact on exploration performance. However, the
question of whether also inaccurate a priori knowledge can improve
exploration performance is still largely open.

In this paper, we address such question by presenting a method
that includes a priori knowledge in an on-line exploration strategy
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for a mobile robot that incrementally selects the next best locations
the robot should reach by exploiting the knowledge of the� oor
plan of the indoor environment that is being explored. A� oor plan
is a two-dimensional representation of an environment composed
of line segments (walls) that identify the spaces within the environ-
ment, like rooms and corridors. Such representation does not need
to be fully accurate. For example, it usually does not include infor-
mation about furniture, which can signi�cantly limit the area that
could be explored by a robot and an a�ect path planning. Hence,
although the� oor plan is known, the map for safe navigation of a
robot should be built and exploration is still required. We show that
knowing a� oor plan that is inaccurate can improve the exploration
performance.

Our method can be practically applied to speed up the creation of
maps of large environments exploiting (possibly inaccurate) prior
knowledge, like in search and rescue, where the� oor plan can
be acquired from an evacuation map or from a blueprint, and in
maintenance or cleaning tasks, that are repeated not very frequently,
such that the environment is subject to some changes between
di�erent executions of the task (objects and furniture can change,
while walls remain static). In this case, prior knowledge could be
the map built in the previous execution of the task.

2 OUTLINE OF THE METHOD
We consider a robot, equipped with a laser range scanner with a
given� eld of view and range, that explores an initially unknown
planar indoor environment E, for which a� oor plan EFP is available.
We do not assume that EFP accurately represents E. The exploration
process we consider is a typical frontier-based exploration com-
posed of the following steps:

(a) the robot perceives a portion of E from its current location
pR using the laser range scanner and integrates the new
perception in the current mapME of the environment,

(b) the robot identi�es the current set of frontiers inME , namely
the boundaries between known and unknown space, and
considers them as possible candidate locations,

(c) the robot selects the most promising candidate location, ac-
cording to an exploration strategy,

(d) the robot reaches the selected location, updatespR , and starts
again from (a).
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The above steps are repeated until no frontier is left and the map
ME represents all the free space of E.

The robot maintains a grid mapME of the discovered environ-
ment using a SLAM (Simultaneous Localization And Mapping)
algorithm. Each cell ofME can be known or unknown and, in the
former case, free or occupied. GivenME , a frontier is a chain of free
cells each one adjacent to at least an unknown cell. A candidate
location is the cell that divides a frontier into two equal segments.
Hence, givenME , we have a set C of candidate locations.

Each candidate location p 2 C is evaluated in step (c) above
according to an utility function u(p) that combines distance and
information gain [1]:

u(p) = � · d(p) + (1 � �) · i(p), (1)

where parameter � 2 [0, 1] weights the two components (we set
� = 0.5 in our experiments). In the above equation, d(p) is the
normalized distance utility value and is inversely proportional to
the distance from pR to p. Instead, i(p) is the information gain utility
value and is calculated as:

i(p) = I (p)
Imax
, (2)

where I (p) is the estimate of the amount of new (unexplored) area
visible from p and Imax is the maximum value of I (p) over all the
candidate locations p 2 C . The next best candidate location p⇤ is
thus selected from C as the one that maximises u(p).

The state-of-the-art approaches for estimating I (p)measures the
maximum visible area from p given the footprint of the robot’s laser
range scanner (as done, e.g., in [2, 4]) or the length of the frontier (as
partially done, e.g., in [9]). These approaches are reasonable if no a
priori knowledge about the environment is available. This estimate
is optimistic and implicitly assumes that the area beyond the frontier
on which p is located is free of obstacles. In our approach, we
calculate I (p) by using the a priori information obtainable from EFP.
Given ME and the� oor plan EFP (Figures 1a and 1b), we overlap
them (Figure 1c) and calculate the amount of new area visible from
p (Figure 1d).

3 EXPERIMENTS AND DISCUSSION
We implemented our approach using the ROS navigation stack
and GMapping [5] for SLAM1. Experiments are performed on a
three-wheeled di�erential drive robot, called Robocom, equipped
with a SICK LMS100 laser range scanner with a� eld of view of
1http://wiki.ros.org/{navigation,gmapping}.

(a) Map ME (b) Floor plan EFP (c) Overlap (d) I (p)

Figure 1: An example of how I (p) (light blue area) is calcu-
lated exploiting the knowledge of the� oor plan. Candidate
location p is the red cell, free cells are white, obstacle cells
are black, and unknown cells are gray.

coverage without prior knowledge with prior knowledge di�erence
D � T � D � T � D T

70% 33.49 8 386.03 94.86 26.76 2.36 281.20 25.80 -20% -27%
80% 37.96 8 425.11 99.15 30.64 2.24 317.13 24.46 -19% -25%
90% 44.17 7.87 488.46 120.29 37.33 1.82 368.33 27.46 -15% -25%
95% 47.10 7.8 528.31 96.75 41.77 2.96 411.11 14.60 -11% -22%

Table 1: Results (over 3 runs) of the experiments with the
Robocom robot. D is distance in m, T is time in s, and � is
the corresponding standard deviation. The last two columns
show the percentage di�erence in performance, according
to D and T , of the strategy with prior knowledge over that
without prior knowledge: negative numbers mean that the
former performs better than the latter.

270° and a range of 20m (Figure 2a). We measure, as exploration
progresses, the distance D travelled and time T required by the
robot and the percentage of covered area, namely the percentage
of free area of E mapped in ME . The runs are performed in an
environment of size 36m ⇥ 27m, with 3 exploration runs from the
same initial position (Figure 2b). Results are averaged over the runs.
Note that the discrepancies between the actual map and the� oor
plan can change due to the changes of furniture in di�erent runs.
We compare our approach to a state-of-the-art approach where
the information gain I (p) is evaluated without prior knowledge,
measuring the maximum visible area from p, as in [2, 4].

Table 1 shows that our exploration strategy outperforms the ex-
ploration strategy without a priori knowledge. Our approach leads
the robot to� rst explore frontiers with a higher information gain,
reaching large percentages of explored area in a shorter time. The
strategy without prior knowledge has a higher standard deviation
than our approach, due to more variable decisions based on an
overestimated information gain.

Overall, experiments suggest that the use of a priori knowledge
can be particularly useful in human-inhabited settings where ob-
jects, furniture, people, and obstacles (as partially open doors) can
negatively a�ect the perception of the robot. In these settings, the
use of a� oor plan, even if it does not faithfully represent the en-
vironment, provides an e�ective mean to drive the robot to select
the next best locations for exploration.

(a) (b)

Figure 2: Robocom (2a) and the� oor plan of the test envi-
ronment (2b). In red, the initial position of the robot.
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