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ABSTRACT

This paper proposes a polynomial-time strategyproof mechanism
that solves multi-agent pathfinding (MAPF) problems with hetero-
geneous and self-interested agents. In MAPF, agents need to reach
their goal destinations while avoiding collisions between them. In
this paper, we consider heterogeneous and self-interested MAPF.
Agents are heterogeneous if the costs of traversing a given path
differ between agents. In particular, we assume each agent has
a private linear cost function of travel time. The proposed strat-
egyproof mechanisms aim to make agents truthfully declare the
slope of the private linear cost function.
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1 INTRODUCTION

In themulti-agent path finding (MAPF) problem, agents on a graph
must move from their start vertices to their goal vertices without
colliding with each other. An objective of MAPF is to minimize the
global cost (e.g., the sum of travel costs of all agents). MAPF has
many practical applications in video games, traffic control [7, 13],
robotics [5, 9, 16], and vehicle routing [8]. Minimizing the sum of
travel costs of MAPF is an NP-complete problem because it is a
generalization of the sliding tile puzzle [10].

Most previous work onMAPF focused on homogeneous and co-
operative agents who share the global cost function [4, 11–15]. In
contrast, agents are heterogeneous if the costs of traversing a given
path differ between agents. If agents are self-interested, they seek
to minimize their individual travel costs. To the best of our knowl-
edge, only one mechanism for heterogeneous and self-interested
MAPF (HSI-MAPF) has been proposed[2].

[2] showed a mapping between MAPF and combinatorial auc-
tions and proposed an iterative combinatorial auction forHSI-MAPF.
Their mechanism is a strategyproof mechanism for achieving an
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optimal solution. However, this mechanism must solve the NP-
hard problem to be strategyproof.

In this paper, we assume each agent has a private linear cost
function of travel time. This paper proposes a polynomial-time
strategyproofmechanism forHSI-MAPF. Strategyproofmechanisms
for HSI-MAPF aim to make agents truthfully declare the slope of
the private linear cost function. The proposed mechanism is based
on a Cooperative A* (CA*) algorithm [13] and a truthful mecha-
nism for one-parameter agents [3].

The contribution of the paper is to propose the polynomial-time
strategyproofmechanism for HSI-MAPF. To the best of our knowl-
edge, there has been no research into polynomial-timemechanisms
for HSI-MAPF.

2 HETEROGENEOUS MAPF

A MAPF instance M consists of a graph G = (V ,E) and a set of
agents K = {1, . . . ,k}. Each agent i ∈ K has a unique start vertex
si and a unique goal vertex дi and needs to go from si to дi while
avoiding collisions with other agents. In each time step, agents can
move along the edges of the graph or wait in their locations. Agent
i conflicts with agent j , i if they are situated in the same vertex in
the same time step or traverse the same edge in the same time step.
Let T = {0, 1, . . . , } be a set of time steps and Pi ⊂ V ×T be agent
i’s path which is a set of pairs of vertices and times that agent i
passes. The travel time is n(Pi ) = min{t ∈ T |∀t ′ ≥ t , (дi , t

′) ∈ Pi }.
Each agent has a private linear cost function of travel time. We call
the slope of the function “time step cost." The travel cost of agent
i is given bywin(Pi ), where wi ∈ R+ is the time step cost.

3 STRATEGYPROOF COORDINATED A*

CA* [13] plans each path of the single agent in order. Each path is a
shortest path without colliding with paths that have already been
planned.

SCA* ismodifiedCA* for heterogeneous and self-interested agents.
SCA* decides the sequence of path planning by declarations of time
step costs. Moreover, SCA* makes the agents pay monetary costs.
Let b be the declarations of agents, β(b) be paths that SCA* deter-
mines on the basis of b , and τ (b) be the payment function. The cost
of agent i in SCA* is ci (b) = win(βi (b)) + τi (b).

We assume b1 ≥ . . . ≥ bk without loss of generality, and if
bi = bj and i < j then SCA* plans the path of agent i before that
of agent j. The SCA* payment is given by

τi (b) =
∑

j>i

bj
{

n(βi (bj+1,b−i )) − n(βi (bj ,b−i ))
}

(1)

where (b ′i ,b−i ) = (b1, . . . ,bi−1,b
′
i ,bi+1, . . . ,bk ) and bk+1 = 0.
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Figure 1: Average costs for each agent on 4-connected 16x16 grid maps with 20% obstacles, where the time step costs of agents

were selected randomly from the uniform distribution on (left) [0, 1], (right) [0, 0.08] ∪ [0.98, 1]

For example, agents 1, 2 declare time step costs 3.2, 2.5, respec-
tively. If agent 1 declares 0, then the path length of agent 1 is 7, and
if agent 1 declares 2.5, then the path length of agent 1 is 5. Hence,
the payment of agent 1 is 2.5 ∗ (7 − 5) = 5.

Theorem 3.1. If CA* for M = (G,K) in any order has a solution,

SCA* for M is strategyproof.

Proof. If ci (wi ,b−i ) ≤ ci (b) holds for all b ∈ Rk
+
, then agent i

has no incentive to lie.

ci (wi ,b−i ) − ci (b) = (bi −wi )n(βi (b)) −

∫ bi

wi

n(βi (c,b−i ))dc

≤ 0

holds because n(βi (·,b−i )) is monotonically non-increasing. �

We also shows that SCA* is a polynomial-time mechanism.

Theorem 3.2. β runs inO(k2 |V | |E |), and τ runs inO(k3 |V | |E |).

Proof. CA* runs in O(k2 |V | |E |), so β runs in O(k2 |V | |E |). τi
must execute CA*without agent i and execute A* to calculate agent
i’s path at most k times. Hence, τ runs in O(k3 |V | |E |). �

SCA* can redistribute a part of the payments for reducing the
costs of agents. The redistribution h based on redistribution meth-
ods [6] is given by

hi (b−i ) =
1

k
min

l ∈K∪{k+1}\{i }

∑

j∈K

τj (bl ,b−i ). (2)

The cost of agent i is ci (b) = wi βi (b) + τi (b) − hi (b−i ). SCA* with
redistribution is also a strategyproof and polynomial-time mecha-
nism.

4 EXPERIMENTAL RESULTS

We conducted an empirical evaluation of SCA*. Table 1 shows the
runtime of each function when solving problems on a 4-connected
8 × 8 grid map, with the number of agents ranging between 8 and
14. All times were measured on an Intel(R) Core(TM) i7-6700 CPU
@ 3.40 GHz. The setting of the problem is the same as that in [1]
who compared the iterative combinatorial auction for MAPF and
other optimal solvers, so we can compare our result and Table 1

Table 1: Runtime (ms) of SCA* with Eq. (2) on 4-connected

8x8 grid map with no obstacles

k β τ h

8 0.27 0.68 37.20
9 0.23 0.67 54.34
10 0.23 0.85 86.06
11 0.24 1.01 124.91
12 0.25 1.29 186.97
13 0.26 1.51 257.62
14 0.28 1.77 341.54

in [1]. SCA* scales well with the number of agents. However, the
iterative combinatorial auction and other optimal solvers do not
scale well with the number of agents.

Figure 1 (left) shows the average costs of a single agent in SCA*
and CA* on 4-connected 16 × 16 grid maps with 20% obstacles,
where the time step costs of agents were selected randomly from
the uniform distribution between 0 and 1. SCA* had a lower travel
cost than CA*. The total cost is the sum of the travel cost and the
payment. SCA* with the redistribution had a lower total cost than
CA*.

We show that, where only a few agents have high time step
costs, SCA* without the redistribution can have a lower total cost
than CA*. Figure 1 (right) shows the average cost of a single agent
on maps the same as previous maps, where the time step costs of
agents were selected randomly from the uniform distribution on
[0, 0.08]∪[0.98,1]. In the problems, the agents’ time step costswere
polarized, and only 20% agents had the high time step costs. The
total cost of SCA* was lower than that of CA* in these problems,
even if SCA* does not conduct the redistribution.
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