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ABSTRACT
The affective state called flow is described as a state of optimal
experience, total immersion and high productivity. As an impor-
tant metric for various scenarios ranging from (professional) sports
to work environments to user experience evaluations, it is exten-
sively studied using traditional questionnaires. In order to make
flow measurement accessible for online, real-time environments, in
this work, we present our preliminary findings towards automati-
cally estimating a user’s flow state based on physiological signals
measured with a wearable device. We conducted a study of sub-
jects playing the game Tetris in varying difficulty levels, leading to
boredom, stress, and flow. Using a convolutional neural network,
we achieve an accuracy of 70% in recognizing flow-inducing levels.
In the future, we expect flow to be a potential reward signal for
human-in-the-loop reinforcement learning systems.
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1 INTRODUCTION
The research field Affective Computing is dealing with recognizing,
processing, interpreting, and simulating human affects and emo-
tions [12, 16, 17]. With regard to the goal of recognizing emotions,
typical approaches rely on various kinds of sensor data like images
[13, 14], videos [1, 19], audio data [21], and physiological signals
such as heart rate (HR) or electrodermal activity (EDA) [11, 15, 22].

Besides basic emotions such as happy or sad, other psychological
models such as the flow theory [4] can be a valuable construct to
assess a user’s affective state. The state of flow is characterized by
optimal experience, total immersion and high productivity, making
it an interesting piece of information when assessing user experi-
ences, from user interfaces to games to whole environments.

Traditionally, whether a subject experiences flow or not is deter-
mined through questionnaires [8, 10], which has the disadvantage
of being only applicable after the actual occurrence and requires
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manual effort from the subject. In contrast, automatic flow recogni-
tion based on sensor data would be applicable unobtrusively and
in real-time.

In this work, we propose a method to automatically measure flow
using physiological signals from wrist-worn devices. The method
is based on a convolutional neural network (CNN) architecture.
For training data generation, we propose a study setup using the
well-known game Tetris. We show the preliminary results of a small
pilot study.

2 STUDY SETUP
For the data collection, we created a custom version of the game
Tetris [20] as a mobile application. Tetris has already been used
in similar studies and it has been found that depending on the
difficulty of the game, users experience flow [2, 3, 6, 9]. The original
game logic was modified so that there are only three different levels,
i.e., easy, normal, and hard, in random order, each lasting 10 minutes,
and independent from the player’s performance. The difficulty of
the three levels, i.e., the speed of the falling tetriminos, was set
how we expected the game to lead to boredom, flow, and stress
respectively. The recorded physiological data from each level was
labeled accordingly.

Participants were selected so that they all had approximately the
same skill level in the game. They were equipped with an Empatica
E4 wrist-worn device [7] capturing physiological signals such as
EDA, HR and HRV (heartrate variability). The E4 was worn on the
participant’s non-dominant hand. The smartphone (iPhone 5s) with
the Tetris application was held in the other (dominant) hand.

We ran the following preliminary evaluations on a dataset from
a small pilot study we conducted. There were 11 participants (3
female, 8 male) aged between 20 and 35. In total, we gathered 31
sessions, summing up to 15.5 hours of data. 4 participants played
several sessions, 7 played only one session.

3 DATA AND PREPROCESSING
We used three streams of physiological signals from the E4: HR,
HRV, and EDA. HR and EDA are provided by the E4 and were used
in its raw form. With regard to HRV, the E4 provides the so-called
RR-intervals, i.e., the time difference between consecutive heart
beats, from which various HRV measures can be derived. EDA is
sampled at 4 Hz while the HR values are provided at 1 Hz. RR
intervals are not provided at regular intervals but when they occur.

In order to align the RR intervals with the two other data streams,
we calculated a common HRV measure called RMSSD (root mean
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Accuracy [%] Baseline Leave-one-session-out Leave-one-subject-out
boredom vs. not boredom 50.00 65.04 57.13
flow vs. not flow 50.00 70.37 69.55
stress vs. not stress 50.00 66.09 71.17
boredom vs. flow vs. stress 33.33 52.59 50.43

Table 1: Best mean test accuracies achieved in leave-one-session-out and leave-one-subject-out cross validation.

square of successive differences) [18]. The RMSSD measure is com-
puted over windows of data and it is recommended to use a window
size of at least 60 seconds [5]. Consequently, at each time step where
an RR value was received, a window of size 60 seconds before this
point in time was extracted and the RMSSD value was computed
for that window. The sample times of the EDA series were used as
a basis for the final time series. Both HR and RMSSD values were
forward-filled to fit the 4 Hz sampling frequency of the EDA series.
The result is an equidistant time series, sampled at 4 Hz, with EDA,
HR and HRV (i.e., RMSSD) values at each time step.

In order to create the training and validation sets, we split each
session in windows of n samples. The window interval slides for-
ward one sample at a time, i.e., consecutive windows overlap byn−1
samples. For this work, we used 10 second windows, i.e., windows
consisting of n = 40 samples, each containing three values. The
window length of 10 seconds was chosen because preliminary tests
showed that shorter windows do not allow to capture characteristic
patterns.

4 TRAINING AND EVALUATION
Our approach is based on a convolutional neural network architec-
ture. The network consists of four convolutional layers (32 filters,
kernel size 3), connected through max pooling layers. After the
convolutions, one fully connected layer (32 neurons) leads to a final
dense layer with the number of neurons in accordance with the
number of classes of the classification task and a softmax activation.
Except for the last layer, we used ReLU activations for the layers.
During training, dropout is applied after the convolutional (0.1)
and dense (0.5) layers to prevent overfitting.

We evaluated three binary one-vs-all classification tasks and
one task trying to distinguish between all three classes at the same
time. When creating the training and validation data sets, examples
were chosen in a balanced manner, i.e., for the binary tasks, only
half of the examples for the negative class were randomly drawn
from the available examples to keep an even split between the two
classes. We trained and evaluated our model in two ways: leave-
one-session-out cross validation and leave-one-subject-out cross
validation, the latter only on subjects that had played only one
session, thus, validating on a completely unseen subject in each
iteration. Table 1 shows the results.

One can see that the examples associated with boredom are
the hardest to get right. We suppose that the easy level leads to
the highest diversity of feelings among the three levels, i.e., the
very slow speed is sometimes perceived as relaxing, sometimes
as stressful, and only sometimes as distinctively boring. All in all,
the CNN model is able to differentiate between the three classes
considerably more accurately than the baseline strategy.

As we have outlined before, the affective state of flow is often
associated with high productivity or better performance. In the
case at hand, the achieved score in the Tetris game can be inter-
preted as the user’s productivity. Thus, we can apply our model to
Tetris sessions in order to divide a session into intervals of boredom,
flow and stress – this time without taking into account informa-
tion about the actual game level! – and then observe how good
the performance of the player is in the respective states. Players
indeed performed best when the model has recognized the flow
state (average of 2.59 points per 10-second window), second best
when the player is estimated to be bored (2.04 points). In contrast,
when our system recognizes the state of stress, players perform
considerably worse, even obtaining negative scores during these
phases (−0.50 points).

5 DISCUSSION AND FUTUREWORK
In general, the initial results of our approach seem promising. How-
ever, there are several surrounding conditions that have to be im-
proved in future work.

The data set we used for training and evaluating our model is too
small. We showed the first, preliminary results from a small pilot
study, but clearly see the need to greatly increase the number of
subjects. Furthermore, data was collected from a very homogeneous
population (i.e., young and healthy subjects, biased towards males)
which should be broadened in future iterations.

From a psychological perspective, it should be further verified
if the affective states we are trying to induce with the different
difficulty levels of the game really can be considered boredom, stress
and flow. Even though our general setup is in accordance with
previous studies examining flow and especially examining flowwith
the game Tetris, the exact variant of the game and the surrounding
conditions have not been fully verified. Thus, combining our data
collection process with psychology-validated flow questionnaires is
advisable. On the other hand, we could observe that players perform
best during time intervals our model classifies as flow, which could
be regarded as an indicator for an actual flow experience.

All in all, the positive initial results open up several possibilities
for future work. In addition to improving the data set and tuning the
model, we see a lot of potential in transferring the general approach
to other, similar tasks, especially typical tasks of an office job.

More clearly scoped to the field of AI research, we are espe-
cially interested in using automatic flow detection as a feedback
mechanism in human-in-the-loop reinforcement learning. Socially
intelligent agents could benefit from the information about this
affective state by incorporating it as a reward signal for their be-
havior.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2109



REFERENCES
[1] Yoann Baveye, Emmanuel Dellandrea, Christel Chamaret, and Liming Chen. 2015.

Liris-accede: A video database for affective content analysis. IEEE Transactions
on Affective Computing 6, 1 (2015), 43–55.

[2] Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry Pun. 2008.
Boredom, Engagement and Anxiety As Indicators for Adaptation to Difficulty in
Games. In Proceedings of the 12th International Conference on Entertainment and
Media in the Ubiquitous Era (MindTrek ’08). ACM, New York, NY, USA, 13–17.
https://doi.org/10.1145/1457199.1457203

[3] Guillaume Chanel, Cyril Rebetez, Mireille Bétrancourt, and Thierry Pun. 2011.
Emotion assessment from physiological signals for adaptation of game difficulty.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
41, 6 (2011), 1052–1063.

[4] M Csikszentmihalyi. 1990. Flow. The Psychology of Optimal Experience. New York
(HarperPerennial).

[5] Michael R Esco and Andrew A Flatt. 2014. Ultra-short-term heart rate variability
indexes at rest and post-exercise in athletes: evaluating the agreement with
accepted recommendations. Journal of sports science & medicine 13, 3 (2014), 535.

[6] László Harmat, Örjan de Manzano, Töres Theorell, Lennart Högman, Håkan
Fischer, and Fredrik Ullén. 2015. Physiological correlates of the flow experience
during computer game playing. International Journal of Psychophysiology 97, 1
(2015), 1–7.

[7] Empatica Inc. 2018. Real-time physiological signals | E4 EDA/GSR sensor. https:
//www.empatica.com/research/e4/. Accessed: 2018-09-03.

[8] Susan A Jackson and Herbert W Marsh. 1996. Development and validation of a
scale to measure optimal experience: The Flow State Scale. Journal of sport and
exercise psychology 18, 1 (1996), 17–35.

[9] Johannes Keller, Herbert Bless, Frederik Blomann, and Dieter Kleinböhl. 2011.
Physiological aspects of flow experiences: Skills-demand-compatibility effects
on heart rate variability and salivary cortisol. Journal of Experimental Social
Psychology 47, 4 (2011), 849–852.

[10] J Matias Kivikangas et al. 2006. Psychophysiology of flow experience: An explorative
study. Ph.D. Dissertation. Helsingfors universitet.

[11] Hindra Kurniawan, Alexandr V Maslov, and Mykola Pechenizkiy. 2013. Stress
detection from speech and galvanic skin response signals. In Computer-Based
Medical Systems (CBMS), 2013 IEEE 26th International Symposium on. IEEE, 209–
214.

[12] CL Lisetti. 1998. Affective computing.
[13] Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor. 2017. AffectNet:

A Database for Facial Expression, Valence, and Arousal Computing in the Wild.
(2017), 18. https://doi.org/10.1109/TAFFC.2017.2740923 arXiv:arXiv:1708.03985

[14] Ali Mollahosseini, Behzad Hasani, Michelle J Salvador, Hojjat Abdollahi, David
Chan, and Mohammad HMahoor. 2016. Facial expression recognition from world
wild web. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. IEEE, 58–65.

[15] Lennart Nacke and Craig A Lindley. 2008. Flow and immersion in first-person
shooters: measuring the player’s gameplay experience. In Proceedings of the 2008
Conference on Future Play: Research, Play, Share. ACM, 81–88.

[16] Rosalind W Picard. 1999. Affective Computing for HCI.. In HCI (1). Citeseer,
829–833.

[17] Rosalind W Picard. 2003. Affective computing: challenges. International Journal
of Human-Computer Studies 59, 1-2 (2003), 55–64.

[18] Fred Shaffer and JP Ginsberg. 2017. An overview of heart rate variability metrics
and norms. Frontiers in public health 5 (2017), 258.

[19] Shangfei Wang and Qiang Ji. 2015. Video affective content analysis: a survey
of state of the art methods. IEEE Transactions on Affective Computing 6, 4 (May
2015), 410–430.

[20] Wikipedia. 2018. Tetris. https://en.wikipedia.org/wiki/Tetris. Accessed: 2018-09-
03.

[21] Min Xu, L-T Chia, and Jesse Jin. 2005. Affective content analysis in comedy and
horror videos by audio emotional event detection. In Multimedia and Expo, 2005.
ICME 2005. IEEE International Conference on. IEEE, 4–pp.

[22] Jing Zhai and Armando Barreto. 2006. Stress detection in computer users based on
digital signal processing of noninvasive physiological variables. In Engineering in
Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference
of the IEEE. IEEE, 1355–1358.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2110

https://doi.org/10.1145/1457199.1457203
https://www.empatica.com/research/e4/
https://www.empatica.com/research/e4/
https://doi.org/10.1109/TAFFC.2017.2740923
http://arxiv.org/abs/arXiv:1708.03985
https://en.wikipedia.org/wiki/Tetris

	Abstract
	1 Introduction
	2 Study Setup
	3 Data and Preprocessing
	4 Training and Evaluation
	5 Discussion and Future Work
	References



