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ABSTRACT
We present two randomized facility location mechanisms on a

circle that are strictly better than Random Dictator, and provide

the first lower bound for randomized strategyproof facility location

problems.

KEYWORDS
Facility location; Mechanism design; Randomized mechanisms

ACM Reference Format:
Reshef Meir. 2019. Strategyproof Facility Location for Three Agents on a

Circle. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 3 pages.

1 INTRODUCTION
In a facility location problem, a central authority faces a set of n
agents who report their location in some metric space ⟨X,d⟩, and
needs to decide where to place a facility. That is, a deterministic

facility location mechanism is a function f : Xn → X, and a

randomized mechanism outputs a distribution over X. Each agent

i wants the facility to be placed as close as possible to her own

location ai , that is, to minimize d(ai , f (a)) in expectation. The chal-

lenge is to design a strategyproof mechanism f , such that reporting

the truthful location is a weakly dominant strategy for every agent;

and the social cost (SC(a,x) :=
∑
i≤n d(ai ,x)) is minimized for

x = f (a).
In 2009, the agenda of approximationmechanismswithoutmoney

was made explicit in a paper by Procaccia and Tennenholtz [12],

who used facility location as their primary domain of demonstra-

tion due to its simplicity. A mechanism f has λ-approximation if

SC(f (a)) ≤ λSC(a,x) for all a and x ∈ X.

For deterministic mechanisms it is known that if ⟨X,d⟩ is a line
(or a tree) then the Median mechanism is both strategyproof and

optimal [10]. In contrast, on a circle, every deterministic strate-

gyproof mechanism is dictatorial, and its approximation ratio is at

least linear in n [4, 13].

W.r.t. randomized mechanisms, much less is known. There are

no lower bounds, and an upper bound of 2 − 2

n is obtained by the

trivial Random Dictator (RD) mechanism [1]. More variations of the

single facility problem were studied in [2, 5, 8, 9]. See [7] Section 5.3

for a recent overview of approximation results for a single facility.
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In this paper we improve both upper and lower bounds, focusing

on the case of three agents on a circle.

2 PROPORTIONAL CIRCLE DISTANCE
MECHANISM

Note that when an odd number of agents are placed on a circle,

each agent is facing an arc (see Figure 1). We denote by Li the arc
facing to agent i .

Definition 2.1. The Proportional Circle Distance (PCD) mechanism
assigns the facility to each location ai w.p.

Li∑
j≤n Lj

.

Theorem 2.2. PCD is strategyproof for any odd n.

In the limit, PCD obtains an approximation ratio no better than

2, just like RD. However for three agents, RD obtains 2 − 2

n =
4

3
,

and PCD is substantially better.

Proposition 2.3. For n = 3 agents, the PCD mechanism has an
approximation ratio of 5

4
= 1.25, and this is tight.

The PCD mechanism for three agents can also be extended to

general metric spaces (see full version). While it maintains strat-

egyproofness, note that it is a peaks-only mechanism: it always

places the facility on one of the peaks ai . Unfortunately, no peaks-

only mechanism can do better than RD on general graphs: consider

a star graph, where agents are on the leafs.

3 QUADRATIC CIRCLE DISTANCE
MECHANISM

Since the optimal location with 3 agents is always the peak fac-

ing the longest arc, to improve the approximation ratio we must

put more weight on peaks facing long arcs (at least in the “bad”

instances).

Definition 3.1. The q-Quadratic Circle Distance (q-QCD) mecha-
nism assigns the facility toai w.p. proportional to si = max{(Li )

2,q2}.

That is, q puts a lower bound on the probability that each agent

is selected.

Theorem 3.2. For n = 3 agents, The 1

4
-QCD mechanism is strate-

gyproof.

Proposition 3.3. For n = 3 agents, The 1

4
-QCD mechanism has

an approximation ratio of 7

6
� 1.166, and this is tight.

It is an open question whether the QCD mechanism can be

extended to more agents and/or to more general topologies.
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Figure 2

4 LOWER BOUNDS VIA LINEAR
PROGRAMMING

Typically, a first step in proving lower bounds, is to characterize

the set of relevant mechanisms.

Conjecture 4.1. For any n, the best strategyproof mechanism on
a circle is peaks-only.

We can prove a somewhat weaker result:

Proposition 4.2. For any n, the optimal strategyproof mechanism
w.l.o.g. only places the facility either on peaks, or on points antipodal
to peaks.

For a given graph (V ,E), finding the optimal randomized strat-

egyproof mechanism for three agents can be written as a simple

linear optimization program as follows. There are |V |4+1 variables:

(pa,z )a∈V 3,z∈V , where pa,z = fa (z) is the probability that the facil-
ity is placed on z in profile a; and λ ∈ Rwhich is the approximation

factor. The optimization goal is simply to minimize λ. There are
four types of constraints:

(1) Feasibility constraints: pa,z ≥ 0 for all a ∈ V 3, z ∈ V ;

(2) Probability constraints:

∑
z∈V pa,z = 1 for all a ∈ V 3

;

(3) Incentive constraints: For every profile a ∈ V 3
, any agent

i ∈ {1, 2, 3}, and any alternative location a′i ∈ V , set:∑
z∈V

d(z,ai )pa,z ≤
∑
z∈V

d(z,ai )p(a−i ,a′i ),z
;

(4) Approximation constraints: For every profile a ∈ V 3
, set:∑

i ∈{1,2,3}

∑
z∈V

d(z,ai )pa,z ≤ λ ·min

z∈V

∑
i ∈{1,2,3}

d(z,ai ).

In total, we get a bit more than 3|V |4 linear constraints. This is fea-

sible for small graphs with commercial solvers, especially such that

handle well sparse constraint matrices (we used Matlab’s linprog

function).

Lemma 4.3. For any strategyproof [peaks-only] mechanism f on
the circle, there is a neutral and anonymous strategyproof [peaks-only]
д, such that maxa SC(a,д(a)) ≤ maxa′ SC(a, f (a′)).

It is well known that mechanism design problems for finite do-

mains can be written as linear programs [3]. Automated mechanism

design had also been applied to facility location problems, for one or

more facilities on a line [6, 11]. Due to the specifics of the problems

metric space Any Circle

RD 1.333 (from [1]) 1.333 (from [1])

PCD 1.333 1.25
1

4
-QCD - 1.166

best UB 1.333 1.166

LB (peaks-only) 1.333 1.0523

LB 1.0833 1.0456

Table 1: A summary of approximation bounds for 3-agent
randomized mechanisms.

they considered, they used advanced machine learning techniques

rather than linear programming.

Theorem 4.4. There is no strategyproof mechanism for circle
graphs whose approximation ratio is better than 1.0456. If we add the
peaks-only requirement, the lower bound is 1.0523.

To prove the theorem, we coded two linear programs: one that

computes the optimal mechanism, and one that computes the opti-

mal peaks-only mechanism. The number of variables for a circle

withM vertices isM4
(or 3M3

for peaks-only mechanisms) so we

applied some improvements based on symmetries. This enables us

to solve the obtained program for all mechanism on circles up to

M = 28, and the program for peaks-only mechanisms for circles

up toM = 44. We note that the worst-case approximation bounds

in both programs are the same for any |V | ≤ 28, which supports

Conjecture 4.1 above on peaks-only mechanisms, but leaves the

proof as a challenge. The worst-case approximation ratios of the

optimal mechanism for finite circles are shown in Figure 2.

Allowing for general graphs, we were able to push the lower

bound a bit higher, to
13

12
� 1.0833 (see full version).

5 SUMMARY
Table 1 summarizes our results, and puts them in the context of

known bounds. In the full version, we also provide results for deter-

ministic mechanisms in the 2-dimensional plane. We leave many

open questions for future research. In particular, whether the QCD

mechanism can be generalized for more agents, and whether there

are classes of graphs that are inherently more difficult than circles.

The most important question is whether the upper bound of
4

3

(2− 2

n for general n) is tight for general graphs/metric spaces. Also,

while we improved the upper bound for 3 agents on a circle from

4

3
to

7

6
, and the lower bound from 1 to the bounds in Theorem 4.4,

there is still a non-negligible gap.
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