
Effects of Task Similarity on Policy Transfer with Selective
Exploration in Reinforcement Learning

Extended Abstract

Akshay Narayan
School of Computing

National University of Singapore, Singapore
anarayan@comp.nus.edu.sg

Tze Yun Leong
School of Computing

National University of Singapore, Singapore
leongty@comp.nus.edu.sg

ABSTRACT
The SEAPoT algorithm [9] is a knowledge transfer mechanism in
model-based reinforcement learning. By constructing subspaces
around the changed regions, and selectively and efficiently explor-
ing the target task, the transfer is most effective when the source
and target tasks share similar objectives but differ in the transition
dynamics. In this work, we identify the similarity between tasks
using a new light-weight metric, based on the Jensen-Shannon
distance, and show how the degree of similarity affects the transfer
efficacy. We also empirically show that SEAPoT performs better
in terms of jump starts and average rewards, as compared to the
state-of-the-art policy reuse methods.

KEYWORDS
Reinforcement learning; Policy transfer; Transfer in RL; Similarity
metric

ACM Reference Format:
Akshay Narayan and Tze Yun Leong. 2019. Effects of Task Similarity on
Policy Transfer with Selective Exploration in Reinforcement Learning. In
Proc. of the 18th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
The selective exploration and policy transfer algorithm (SEAPoT)
aims to solve a class of problems that can reuse prior knowledge
maximally, while adapting to changes when prior knowledge is
insufficient. Examples of real world applications include assistive
robots in geriatric care homes and hospital wards. We focus on the
settings where the source and target tasks differ in the transition
dynamics and/or reward functions. We define similarity using the
distance between the corresponding state-action transition distri-
butions of the two tasks. The similarity in the environments is
captured in a shared state-action space, and the difference is rep-
resented in a distribution of environmental elements leading to
different transition dynamics.

In SEAPoT, the agent follows the source policy until a change is
detected in the environment. Limited exploration is performed in
the target task to circumvent the surrounding region of the changed
point until a known state with respect to the source task is reached.
The agent then continues to follow the source task policy from
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this known state.The approach introduces new ways to identify the
changes across tasks and construct subspaces to focus on the most
relevant parts of the task’s state space to limit the exploration.

2 SEAPOT MECHANISM
The SEAPoT algorithm (introduced in [9]) involves two stages,
change detection and selective exploration. We model the values
of the state features as a time series and perform change detection
using the product partition approach [1]. In selective exploration,
the agent constructs a subspace local to the change identified based
on its existing knowledge. The subspace construction happens in a
breadth-first manner. We call the set of states reachable from any
given state, si , by taking n actions as the n-step closure, Cn (si ). The
subspace,M ′ = ⟨S ′,A′,T ′,R′⟩, is a well formedMDP, whereA′ ⊆ A
is the action set, R′ is the reward function, and T ′ is the transition
function in this sub-space that must be learned to solve the task.
The set of states inM ′ are identified from the n-step closure of the
origin state, S ′ = Cn (si ).

3 TASK SIMILARITY
To prevent or minimize negative transfer, we determine if the source
and target tasks are “similar”. It is difficult to determine task similar-
ity a priori, unless the transition functions, value functions and/or
reward functions for both tasks are available. Prior efforts in deter-
mining task similarity require pre-defined task models. Common
metrics such as the Kantorovich distance metric [6, 11] and Bisimu-
lation metric [7], are computationally expensive.

We define a new, light weight, metric based on the Jensen-
Shannon distance [4] (JSD) to compute task similarity in the prob-
lems that share the same state-actions. Jensen-Shannon distance is
defined as the square root of the Jensen-Shannon divergence, D JS .
JSD is computed as shown below.

JSD =
√
D JS =

√
1
2DKL(p,m) + 1

2DKL(q,m) , where, m = p+q
2

and, DKL is the Kullback-Leibler divergence, and p and q are any
two probability distributions. The computation complexity of JSD
is linear in the number of elements in the two distributions [8].
The task difference (∆S ,T ) is calculated as follows: In the shared
state-action space, calculate the bin-bin distance, JSD, among the
corresponding state-action transition distributions of the two tasks.
In the JSD equation, p and q are the transition distributions of the
corresponding state-action pairs in the source and target tasks. The
distance between each corresponding state-action pair is passed
through a step function (I) to determine its contribution to the task
difference. The task difference is then the summation of I over all

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2132



(a) ∆T 1,T 2 (b) ∆T 1,T 3 (c) ∆T 1,T 4

Figure 1: Difference between source and target tasks (more spikes mean tasks are much different from each other)
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Figure 2: Comparison between
SEAPoT, PPR, RS and BPR
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Figure 3: Performance of SEAPoT for
two target tasks, T 3 and T 4

Figure 4: Performance of SEAPoT at
different ∆’s

the state-action pairs ∆S ,T =
∑
(s ,a) I(JSD). In Fig 1, each spike in-

dicates the difference in the probability distribution for a particular
state-action pair. The task difference is then calculated according
to ∆S ,T above.

We run a few episodes of the target task to obtain an initial
estimate of the transition probabilities and use this to determine the
task similarity. Intuitively, the task difference metric ∆S ,T identifies
the number of locations where the environment has changed from
the source task to the target, where the source knowledge is no
longer applicable in the target.

4 EXPERIMENTS
We report the experiment results on a taxi [3] like environment
(state-space size=8000) and compare our work with three state-of-
the-art policy reuse methods [2, 5, 10] (Fig.2). SEAPoT improves
on the average rewards over both probabilistic policy reuse and
policy transfer using reward shaping. We attribute the performance
improvement to the following reasons: (i) The agent reuses its
behavioral knowledge learned in the source to the maximum extent
in the target task; (ii) there is minimal exploration in the target
environment.
Effects of Task Difference on Performance

We hypothesize that the performance of SEAPoT degrades when
the source and the target tasks are drastically different. In this
experiment we use a simple navigation task in our test-bed to
verify the hypothesis. Without loss of generality, assume the tasks
T 1,T 2,T 3 andT 4.T 1 is the source task and the others are the targets.
We plot the differences between each pair of tasks in Figure 1. The
spikes indicate the state-action combinations where the two tasks
differ; fewer number of spikes mean the tasks are more similar or
"closer" to each other. In our experiment, T4 is closer to T1 than

T2 (Fig 1) and we expect transferred knowledge to have a more
positive impact on learningT 4. To show the performance difference
of SEAPoT at different degrees of similarity, we plot the average
rewards of two tasks, T3 and T4 in Figure 3. The performance
degradation is more pronounced in the case of T 2; it is not shown
in the plot for clarity of presentation. Next, we plot the accumulated
rewards for each of the target tasks at the end of the learning in
Figure 4. As expected, T2 suffers from negative transfer whereas
T 4 does better with transfer.

5 DISCUSSION AND FUTUREWORK
In model-based reinforcement learning, the environment models
learned in a (source) task can be used to encode valuable infor-
mation that can be transferred to another (target) task. SEAPoT
explores the subspace generated around the changed regions of
the target task for policy transfer. Source task policy is reused by
exploiting online, local information in the target tasks to adapt
to the new setting. We define a new metric to measure the task
similarity and examine the effects of similarity on the performance
of knowledge transfer.

In future, we plan to exploit the information contained in the
learned models to generate better subspaces and reducing the sam-
ple complexity of the target task learning. We also plan to use
simulation for look-ahead to identify tasks structures and similari-
ties, generate partial policies for reuse in the target task, and design
mechanisms to decide when knowledge transfer is not beneficial.
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