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ABSTRACT
Most real world applications of multi-agent systems, need to keep a
balance between maximizing the rewards and minimizing the risks.
In this work we consider a popular risk measure, variance of return
(VOR), as a constraint in the agent’s policy learning algorithm in
the mixed cooperative and competitive environments. We present a
multi-timescale actor critic method for risk sensitive Markov games
where the risk is modeled as a VOR constraint. We also show that
the risk-averse policies satisfy the desired risk constraint without
compromising much on the overall reward for a popular task.
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1 INTRODUCTION
Reinforcement Learning (RL) has been an active area of research
with practical implications to a diverse range of applications from
gaming [14] to robotics [10] to finance [4]. Generally, RL algorithms
[19] learn the optimal policy for an agent in a Markov Decision Pro-
cess (MDP) framework to select actions that maximize the expected
accumulated reward over time. However in many practical scenar-
ios, agents may prefer a policy that provides lower expected reward
but avoids uncertainty (i.e. actions with high but unpredictable
rewards). The inherent uncertainty has been studied in detail by in-
vestigating the statistical properties of the return popularly known
as risk in finance [13]. Some of the popular risk measures include
variance-related measures [7, 18], Value-at-Risk (VOR) [6], Condi-
tional Value-at-Risk (CVaR) [17] and percentile performance [12]
etc. In this work, we consider the VOR risk measure.

The risk-sensitive objective in reinforcement learning is gaining
traction in the recent times [5, 9]. Several variance-related risk mea-
sures and their corresponding algorithms to learn risk-sensitive
policies were proposed in [16, 18, 20]. However, the prior works on
∗equal contribution by the first two authors.
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risk-sensitive RL only deals with single-agent setting. To the best
of our knowledge, ours is the first effort to look at risk-sensitive ob-
jective in multi-agent RL setting. Several practical applications like
traffic control [21], coordination of autonomous vehicles [3] etc. im-
plicitly involve interaction between multiple agents and one needs
to account for the risk in such applications. We incorporate the
variance-related risk as a constraint and model it as a constrained
stochastic game. We consider mixed cooperative and competitive
multi-agent setting and develop actor-critic algorithms under the
the centralized training with decentralized execution framework
[8, 11].

2 MODEL
The multi-agent environments are modeled as a stochastic (Markov)
game G which is defined as a tuple (S,A,T , r ,Z ,O,N ,γ ), where S
denotes the states in the environment. The agents {1, ...,N } upon
taking actions from the set {A1, ...,Ak }, move to the next state
governed by environment’s state transition function T : S ×A1 ×
...×Ak → S . At each time step, the agents draw partial observation
z ∈ Z based on observation function O(s,n) : S × A → Z . Each
agent also maintains an action-observation sequence H = (Z ×A)∗

on which it conditions a stochastic policy πθ : H × A→ [0, 1] to
take an action. This results in a cost based on the cost function
ri (s,a) : S ×An → R for an agent i and discount factor γ ∈ [0, 1).

The goal for the agent i is to minimize the expected discounted
cost: Ri = ΣTt=0γ

t r ti . Here, ri is the cost function for agent i . The
discounted return of state si and state-action pair (si ,ai ) for agent i
is defined as Ri (si ) = ΣTt=0γ

t r ti (s
t ,at )|s0 = si ,π

θi and Ri (si ,ai ) =
ΣTt=0γ

t r ti (s
t ,at )|s0 = si ,a0 = ai ,π

θi respectively. For an agent i ,
the expected value of the return for state s and state-action pair
(s,a) are known as value function V θ

i (s) = E[Ri (s)] and action-
value function Qθ

i (s,a) = E[Ri (s,a)] respectively, for a policy πθ .

3 VOR RISK CONSTRAINED OBJECTIVE
We present VOR [18] as a variance-related risk measure for multi-
agent mixed cooperative and competitive setting. VOR is a measure
of variability in the reward sequence for a policy πθ , defined as:

Λθ (s) = E[Rθ (s)2] −V θ (s)2, (1)

We define square reward function as follows: U θ (s) := E[Rθ (s)2].
In risk neural settings, the goal of agent i is to find the optimal
policy parameter by solving the following equation:

θ∗i = argmin
θi

J (θi ), where J (θi ) = E[R
θi ] (2)
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Algorithm 1 Risk Constrained MADDPG

1: for episode = 1 toM do
2: Input← Initial State s and Initialize Replay Buffer D
3: for n = 1 to max episode length do
4: for each agent i , select a action ai = µθi (oi ) +Nt { where Nt is a random process and oi is partial state observation of agent i }
5: Execute actions a = (a1, . . . ,aN ) from state s and observe reward r by going to new state s ′
6: Store (s,a, r , s ′) in replay buffer D and s ← s ′

7: for agent i = 1 to N do
8: Sample a random minibatch of S samples (s j ,aj , r j , s ′j ) from D
9: Estimate Λθi (s j ) and set y j = r ji + γQ

µ′
i (s
′j ,a′1, . . . ,a

′
N )|a′k=µ

′
k (o

j
k )
+ λi (Λ

θi (s j ) − δi ) { µ ′ is the deterministic policy }

10: Update critic by minimizing the loss L(θi ) = 1
S Σj (y

j −Q
µ
i (s

j ,a
j
1, . . . ,a

j
N ))

2 { Qµ
i is central action-value function of agent i }

11: Gradient descent for actor’s policy parameter on faster timescale: ∇θi L ≈
1
S Σj∇θi µi (o

j
i )∇aiQ

µ
i (s

j ,a
j
1, . . . ,ai , . . . ,a

j
N )|ai=µi (o

j
i )

12: λn+1i = max(0, λni + b
n (Λθi (si ) − δi ) where bn is the step size { Gradient ascent for Lagrange multiplier on slower timescale }

13: end for
14: Update target network parameters for each agent i: θ ′i ← τθi + (1 − τ )θ ′i
15: end for
16: end for=0

However, in our paper the goal is to find the risk averse policy by
including VOR risk measure as a constraint. VOR risk-sensitive
objective function for an agent i is defined as follows:

min
θi

J (θi ) s.t. Λθi (s0i ) ≤ δi (3)

We employ the Lagrangian relaxation procedure [1] which con-
verts the constrained optimization problem (3) into the following
unconstrained optimization problem:

max
λi ≥0

min
θi

(
L(θi , λi ) := J (θi ) + λi

(
Λθi (s0i ) − δi

))
(4)

where λi is the Lagrange multiplier. The objective for an agent i
is to find the local saddle point (θ∗i , λ

∗
i ) of Lagrangian (4) which

satisfies (5). From the saddle point theorem, the θ∗i is local optimal
policy parameter for VOR-constrained optimization problem (3).

L(θi , λi ) ≥ L(θ∗i , λ
∗
i ) ≥ L(θ∗i , λi ) (5)

4 PROPOSED ALGORITHM
We propose RC-MADDPG actor-critic algorithm for finding so-
lution (θ∗i , λ

∗
i ). The RC-MADDPG algorithm uses multi-timescale

approach [2] along with the centralized training with decentralized
execution framework similar to [8, 11]. Details of our algorithm are
given in Algorithm 1.

5 EXPERIMENTS
We considered well-studied mixed multi-agent environment Keep
Away [11][15], where the goal of good agents is to reach the land-
mark while adversaries are pushing them away.

Training Details: For the above task, we vary both the number
of good agents and adversaries upto 2, resulting in different multi-
agent scenarios with maximum of 4 agents. The main parameters
are the policy parameter θ , the Lagrange multiplier λ, which are
updated in a multi-timescale based updation strategy.

Estimation of risk-criteria in unconstrained case: For the
Keep-Away task, we train a multi-agent RL model in an uncon-
strained setting for around 60K episodes with MADDPG algorithm
[11] and used this converged policy for the next 1000 episodes to

estimate the reward and VOR in the unconstrained setting. Next
we train our proposed risk-constrained algorithm and estimate the
reward and VOR for the constrained case. We used half of the es-
timated VOR for converged unconstrained policy as a constraint
VOR-δ in our VOR risk-constrained objective for each agent.

Results: In each of the scenarios, we compare the proposed
RC-MADDPG algorithm for VOR risk averse policy with risk neu-
tral policy obtained by [11]. Each experiment is repeated 30 times
and their average is reported in Table 1. Comparative analysis of
the results of the constrained model with the unconstrained one
results show that it is indeed possible to generate constraint satis-
fying policies that can achieve similar reward as their respective
unconstrained counterpart.

N,M Unconstrained VOR constrained
VOR Reward VOR-δ VOR Reward

1, 1 0.653 -9.293 0.327 0.276 -11.036
1, 2 1.2 -19.187 0.6 0.532 -20.542
2, 1 0.749 -12.519 0.375 0.246 -15.689
2, 2 1.385 -26.587 0.693 0.477 -30.403

Table 1: Comparison of the VOR constrained policy with the
unconstrained one. N and M are the number of adversaries and
good agents. VOR-δ is the upper limit of VOR in the constrained
case. Bold numbers indicate that the constraint has been satisfied.

6 CONCLUSION
We considered the problem of finding the risk averse polices for
mixed multi-agent cooperative-competitive environments. We in-
corporated VOR risk measure as a constraint and proposed RC-
MADDPG algorithm that adopts “centralized training of decen-
tralized policies" framework and multi-timescale approach. We
empirically demonstrated how the constrained policy can be risk-
averse and yet achieve similar rewards as the unconstrained one,
on the Keep Away task.
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