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ABSTRACT
We study the notion of k-resilient distribution of graph-structured
computations supporting agent decisions, over dynamic and phys-
ical multi-agent systems.We devise a replication-based self-organizing
distributed repair method, namely DRPM[MGM-2], to repair the dis-
tribution as to ensure the system still performs collective decisions
and remains resilient to upcoming changes. We focus on a particu-
lar type of distributed reasoning process to repair, where computa-
tions are decision variables and constraints distributed over a set of
agents. We experimentally evaluate the performances of our repair
method on different topologies of multi-agent systems (uniform or
problem-dependent) operating stateless DCOP algorithms (Max-
Sum and A-DSA) to solve classical DCOP benchmarks (random
graph, graph coloring, Ising model) while agents are disappearing.
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1 INTRODUCTION
We consider the problem of distributing a set of computations sup-
porting decisions over a set of agents embodied in physical devices
(or nodes / agents), like robots, sensors or autonomous cars. Col-
lective and coordinated decisions are organized in a computation
graph, where vertices represent computations and edges represent
a dependency relation between computations, like in distributed
constraint optimization problems (DCOP) [1]. Computations are
assigned to on agents according to a distribution function µ :X→A.
Here systems must be able to cope with agents additions and fail-
ures: when an agent stops responding, other agents in the system
must take responsibility and run the orphaned collective compu-
tations. As to cope with such dynamics by keeping computations
and decisions going whilst the infrastructure changes, one solution
inspired by distributed databases is replication [5, 6]. In order to
ensure resilience of decisions, we thus propose to replicate com-
putation definitions instead of data. More precisely, we define the
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notion of k-resilience, which characterizes systems able to provide
the same functionalities (or make the same decisions) even when
up to k nodes disappear, as follows: Given a set of agents A, a set of
computationsX, and a distribution µ, the system isk-resilient if for
any F ⊂A,|F | ≤k , a new distribution of computations µ ′ :X→A\F
exists.

2 RESILIENCE FRAMEWORK COMPONENTS
Figure 1 summarizes the main components of our reparation frame-
work, called DRPM[MGM-2]. Assuming initial deployment and
replica placement have been performed at system boot strap, the
system will execute the following repair cycle all along its life-
time: (a) Detect departure/arrival; (b) Activate replicas of missing
computations (using MGM-2); (c) Place new replicas for missing
computations (using DRPM), and continue nominal operation.

2.1 Computation Distribution
The placement of decision-related computations on physical agents
has an important impact on the performance characteristics of
the global system: some distributions may improve response time,
some others may favor communication load and some others may
be better for other criteria like QoS or running cost. Assigning
computations to agents can be mapped to an optimization problem,
as proposed in [4], but remains an NP-hard problem depending on
the infrastructure and the computations to distribute. Thus, in a
distributed system, solving it each time an agent (dis)appears is not
reasonable. We thus propose to repair an initial distribution (that
could be optimally computed), using computation replicas.

2.2 Replica Placement
One pre-requisite to k-resilience is to still have access to the def-
inition of every computation after a failure. One approach is to
keep k replicas (copies of definitions) of each active computation on
different agents. Provided that the k replicas are placed on different
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Figure 1: DRPM[MGM-2] life cycle in a glance.
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agents, no matter the subset of up to k agents that fails there will
always be at least one replica left after the failure, as classically
found in distributed database systems [3].

We devise a distributed replica placementmethod, namelyDRPM,
to enable each agent to place replicas for its computations on
other trustworthy agents. DRPM is a distributed version of itera-
tive lengthening (uniform cost search based on path costs) with
minimum path bookkeeping to find the k best paths. The idea is to
host replicas on closest neighbors with respect to communication
and hosting costs and capacity constraints, by searching in a graph
induced by computations dependencies. It outputs a distribution of
k replicas (and the path costs to their hosts) with minimum costs
over a set of interconnected agents. If it is impossible to place the
k replicas, due to memory constraints, DRPM places as much com-
putations as possible and outputs the best resilience level it could
achieve. One hosting agent, called initiator, iteratively asks each of
his lowest-cost neighbors, in increasing cost order, until all replicas
are placed. Candidate hosts are considered iteratively in increasing
order of cost, which is composed of both communication cost (all
along the path between the original computation and its replica)
and the hosting cost of the agent hosting the replica.

Once all computations have been replicated on k agents, the
system can operate. In our experiments, this operation consists in
executing DCOP solution methods.

2.3 Decentralized Repair Method
Given a mechanism to replicate computations, we model the re-
pair problem itself as a distributed constraint optimization problem
(DCOP) solved using MGM-2 [2], to be implemented by agents
following a leave or an entry in the system, as to move some com-
putations to restore the correct function of the system or to increase
the quality of the distribution of the computations over agents.

3 EXPERIMENTATIONS
To illustrate our DCOP-based repair framework, we applied to two
stateless DCOP solution methods: Max-Sum and A-DSA. Here, fac-
tor or constraint graphs are computation graphs to be deployed
and repaired at runtime. We run the experiments using the multi-
threaded DCOP library pyDCOP1. To evaluate our repair frame-
work, we generate benchmarks composed each of three compo-
nents: a problem definition, a multi-agent topology (the infrastruc-
ture), and a disturbance scenario. We study three different types
of DCOPs: (i) random graph soft coloring problem, (ii) scale free
graph soft coloring, and (iii) Ising problems.

We generate disturbance scenarios as sequences of perturbation
events happening every 30 seconds, starting at t = 20s . At each
such event, k randomly chosen agents disappear as to analyze the
impact on DCOP solution methods, and observe the k-resilience
of our system.

Figure 2 shows the cost of the solution found by A-DSA and Max-
Sum over time, i.e. the performance of the processes to repair. On
the different settings we investigate, operating these algorithms is
not much impacted by our repair method DRMP[MGM-2], and the
systems continue providing solutions, whilst agents are disappear-
ing, which demonstrates the resilience of these systems. Since, our
1https://github.com/Orange-OpenSource/pyDcop
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(a) A-DSA
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(b) Max-Sum

Figure 2: Cost of A-DSA (top) and Max-Sum (bottom) solu-
tion at runtime, with (blue) and without perturbation (red),
on uniform (left) and problem-dependent (right) infrastruc-
ture, and when solving scale free graph coloring (top), ran-
dom graph coloring (middle), and Ising (bottom) problems.

repair method is based on the replication of computations, using
problem encoding requiring less computations (choosing constraint
graphs instead of factor graphs) is a better choice. Indeed, the com-
plexity of the repair process, encoded as a DCOP itself, strongly
depends on the number of computations and the density of the in-
frastructure. Moreover, on our experiments, Max-Sum operation is
much more impacted by agent removals and repairing than A-DSA
which is very robust to such dynamics.
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