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ABSTRACT
This study proposes an intuitive and flexible framework for defin-

ing a large variety of paraconsistent entailment relations. We first

introduce a notion named entailment function (EF) that is used for

associating a value called entailment degree to every pair of belief

base and formula. Then, we introduce our EF-based framework for

defining paraconsistent entailment relations. Finally, we discuss a

connection between the notion of entailment function and that of

inconsistency measure.
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1 INTRODUCTION
We are interested in this work in reasoning under inconsistency

using paraconsistent entailment relations. An entailment relation

for a formal logic is said to be paraconsistent if it does not satisfy the

principle of explosion. The literature is rich of paraconsistent logics

that have been defined in different ways, such as many-valued

approaches (e.g. see [2, 5, 7, 13]), and the approaches based on the

notion of maximal consistent subset (e.g. [3, 4, 14].

We here propose an intuitive and flexible framework for defining

a large variety of paraconsistent entailment relations. it is obtained

by using a notion named entailment function, which is used to asso-

ciate a value, called entailment degree, to every pair of belief base

and formula. Intuitively, the entailment degree of a belief base B and

a formula ϕ can be seen as the truth value of the fact “B entails ϕ". In
particular, 0 represents the impossibility to be a true conclusion of a

belief base, while 1 represents the necessity to be a true conclusion

of a belief base. Then, we introduce our framework for defining

paraconsistent entailment relations. Our approach consists simply

in using an entailment degree threshold for selecting informative

conclusions. Finally, we discuss an interesting connection between

the notion of entailment function and that of inconsistency mea-

sure (IM) (e.g. see [10]). In particular, we introduce an approach

for defining IM-based entailment functions. Note that we change

postulates for the entailment functions to take into account that
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most of the proposals for IMes that have been made in the literature

use the set R+.

2 BELIEF BASES
We consider in this work that every piece of information is repre-

sented using classical propositional logic. A belief base is generally

defined as a finite set of formulas. We use in this work a generaliza-

tion of this notion by dividing a belief base into two parts.

Definition 2.1 (Belief base). A belief base is an ordered pair ⟨Γ,∆⟩
where Γ and ∆ are finite sets of formulas and Γ ⊬ ⊥. The set Γ is

called the necessary part and ∆ the possible part.

A belief base ⟨Γ,∆⟩ is said to be inconsistent if Γ∪∆ ⊢ ⊥. Moreover,

we generalize the classical entailment relation ⊢ to the belief bases

as follows: ⟨Γ,∆⟩ ⊢ ϕ iff Γ ∪ ∆ ⊢ ϕ.

Definition 2.2 (NMCS). Given a belief base B = ⟨Γ,∆⟩, a setM of

formulas is an NMCS of B if (i)M is a maximal consistent subset of

Γ ∪ ∆ and (ii) Γ ⊆ M .

Definition 2.3 (Free Formula). Given a belief base B = ⟨Γ,∆⟩, a
formula ϕ ∈ Γ ∪ ∆ is said to be free in B if ϕ ∈

⋂
M ∈NMC(B ) M .

We use NMC(B) and Free(B) to denote respectively the set of

all the NMCSes of B and the set of all the free formulas of B.

3 ENTAILMENT FUNCTIONS
An entailment function associates an entailment degree to a formula

w.r.t. a belief base. An entailment degree of a formula according

to a belief base can be interpreted as a truth value associated to

the fact that this formula is entailed by the considered belief base.

Formally speaking, an entailment function E is defined as a function

that maps a belief base and a formula onto a value in [0, 1].

Definition 3.1 (Rational Entailment Function). An entailment

function E is said to be rational if it satisfies the following properties
for every belief base B = ⟨Γ,∆⟩ and for all formulas ϕ,ψ :

• Necessity: if Γ ⊢ ϕ then E (B,ϕ) = 1;

• Impossibility: if Γ ⊢ ϕ, then E (B,¬ϕ) = 0;

• Consequence: if ϕ ⊢ ψ then E (B,ϕ) ≤ E (B,ψ );
• Consistency: if Γ ∪∆ ⊬ ⊥, then if Γ ∪∆ ⊢ ϕ then E (B,ϕ) = 1

else E (B,ϕ) = 0.

Necessity states that if a formula is entailed by the necessary

part of a belief base then it is necessarily entailed by the latter.

Similarly, Impossibility states that if a formula is entailed by the

necessary part then its negation cannot be entailed by the latter.

Necessity and Impossibility come from the fact that we consider

as known all the formulas occurring in the necessary part of any

belief base. Consequence states that a logically weaker formula
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cannot be less true. We use this postulate to capture the fact that

the logical consequences of a formula are at least as informative as

this formula. Consistency guarantees that the classical reasoning
is preserved in the case of consistent belief bases.

One can also consider the following additional rationality pos-

tulates for entailment functions that formalize interesting aspects.

For all belief base B = ⟨Γ,∆⟩ and for all two formulas ϕ,ψ :

• FreeForm : if Free(B) ⊢ ϕ and Free(B) ⊬ ψ then E (B,ϕ) ≥
E (B,ψ );
• ENMCS (resp. S − ENMCS) : if (i) ∃M ∈ NMC(B) s.t.M ⊢ ϕ
and (ii) ∀M ∈ NMC(B) we have M ⊬ ψ , then E (B,ϕ) ≥
E (B,ψ ) (resp. E (B,ϕ) > E (B,ψ ));
• ANMCS (resp. S − ANMCS) : if (i) ∀M ∈ NMC(B) we have
M ⊢ ϕ and (ii) ∃M ∈ NMC(B) s.t. M ⊬ ψ , then E (B,ϕ) ≥
E (B,ψ ) (resp. E (B,ϕ) > E (B,ψ )).

Example 3.2. We define in this example an entailment function,

denoted ENMC, that is based on the use of NMCSes:

ENMC (⟨Γ, ∆⟩, ϕ ) =
| {M ∈ NMC(B ) | M ⊢ ϕ } |

|NMC(⟨Γ, ∆⟩) |

For instance, we have ENMC (⟨{¬p ∨ ¬q}, {p,¬p}⟩,¬q) =
1

2
, since

there are two NMCSesM1 = {¬p ∨ ¬q,p} andM2 = {¬p ∨ ¬q,¬p}
and onlyM1 entails ¬q.

Proposition 3.3. ENMC is a rational entailment function that sat-
isfies the following properties: FreeForm, S − ANMCS, S − ENMCS.

4 PARACONSISTENT ENTAILMENT
RELATIONS

We here propose an approach for defining paraconsistent entail-

ment relations, which is based on the use of entailment functions.

The main idea consists in using an entailment degree threshold for

selecting informative formulas.

Definition 4.1 (EF-based Entailment Relation). Given an entail-

ment function E and a value v ∈ [0, 1], we define the entailment

relation ⊢
v,≥
E (resp. ⊢

v,>
E ) as follows: B ⊢vE ϕ iff E (B,ϕ) ≥ v (resp.

E (B,ϕ) > v).

Proposition 4.2. Let E be a rational entailment function and
v ∈]0, 1] and v ′ ∈ [0, 1[. Then, the following properties holds for all
belief base B = ⟨Γ,∆⟩ and ⊢E∈ {⊢

v,≥
E , ⊢v

′,>
E }:

(1) ∀ϕ, if Γ ⊢ ϕ, then we have B ⊢E ϕ and B ⊬E ¬ϕ;
(2) if Γ ∪ ∆ ⊬ ⊥, then ∀ϕ, B ⊢E ϕ iff Γ ∪ ∆ ⊢ ϕ;
(3) ∀ϕ,ψ , if B ⊢E ϕ and ϕ ⊢ ψ , then B ⊢E ψ .

An EF-based entailment relation may lead to contradictory for-

mulas from a same belief base. To avoid this situation, one can

require the following postulate: E (B,ϕ∧ψ ) =min(E (B,ϕ),E (B,ψ ))
(Conjunction), which allows to get adjunction property.

Proposition 4.3 (Adjunction). Let E be an entailment function
that satisfies Conjunction, v ∈ [0, 1] and v ′ ∈ [0, 1[. Then, for all
belief base B and formulasϕ,ψ , if B ⊢E ϕ and B ⊢E ψ , then B ⊢E ϕ∧ψ
for ⊢E= ⊢

v,≥
E , ⊢v

′,>
E .

Proposition 4.4 (Non-Contradiction). Let E be a rational
entailment function that satisfies Conjunction, v ∈ [0, 1] and v ′ ∈
[0, 1[. Then, for all belief base B and for all finite set S ⊆ {ϕ ∈ Form |
B ⊢E ϕ}, S ⊬ ⊥ for ⊢E= ⊢

v,≥
E , ⊢v

′,>
E .

5 INCONSISTENCY MEASURES AND
ENTAILMENT FUNCTIONS

An inconsistency measure is defined as a function that associates a

non negative value to each belief base [10]. It is used to quantify the

amount of contradiction of a belief base. The following postulates

are adaptations to our definition of belief base of postulates for

inconsistency measures introduced in [10]:

• IM − Consistency: for all belief base B = ⟨Γ,∆⟩, I (B) = 0 iff

Γ ∪ ∆ ⊬ ⊥;
• Monotonicity: for all belief base B = ⟨Γ,∆⟩, finite set of

formulas Γ′ with Γ ∪ Γ′ ⊬ ⊥ and finite set of formulas ∆′,
I (B) ≤ I (⟨Γ ∪ Γ′,∆ ∪ ∆′⟩).

Most of the proposals for inconsistency measures that have been

made in the literature use, instead of the interval [0, 1], the set R+

which is possibly augmented with a greatest element denoted ∞

(e.g. [1, 6, 8–12, 15]). Thus, to associate entailment functions to

such inconsistency measures, we need to reformulate Necessity
andConsistency to be able to useR+∪{∞} for entailment functions

instead of [0, 1]:

• Necessity 2: for all belief base B = ⟨Γ,∆⟩ and formulas ϕ,ψ ,
if Γ ⊢ ϕ and Γ ⊬ ψ , then E (B,ϕ) ≥ E (B,ψ ).
• Consistency 2: for all belief base B = ⟨Γ,∆⟩ with Γ ∪ ∆ ⊬ ⊥
and for all formula ϕ, if Γ ∪ ∆ ⊢ ϕ then E (B,ϕ) > 0; and if

and Γ ∪ ∆ ⊬ ϕ then E (B,ϕ) = 0.

Let us now introduce our approach for associating an entailment

function to every inconsistency measure. It consists in considering

the entailment degree of a formula w.r.t. a belief base as the amount

of contradiction introduced by the negation of this formula in

the considered belief base. More precisely, given an inconsistency

measure I , its related entailment function, denoted EI , is defined
as follows: EI (⟨Γ,∆⟩,ϕ) = I (⟨Γ,∆′ ∪ {EQ (∆′,¬ϕ)}⟩) − I (⟨Γ,∆′⟩),
where ∆′ = ∆ \ {ψ ∈ ∆ | Γ ⊢ ψ or Γ ⊢ ¬ψ } and EQ (∆′,¬ϕ) denotes
any formula equivalence to ¬ϕ but does not belong to ∆′. It is worth
noting that EQ (∆′,¬ϕ) can be computed in linear time by using the

double negation law: adding the double negation ¬¬ until obtaining

a formula that does not belong to ∆′.
We remove from the possible part the formulas that are in {ψ ∈

∆ | Γ ⊢ ψ or Γ ⊢ ¬ψ } because we know how to consider them

using the fact that the formulas in Γ are necessary. Further, we use

EQ (∆′,¬ϕ) instead of ¬ϕ to take into account the fact that ¬ϕ can

be in ∆′.
Note that for all inconsistencymeasure I that satisfiesMonotonicity,

and for all belief base B and formula ϕ, we have EI (B,ϕ) ≥ 0.

Following Definition 4.1, an EF-based entailment relation uses

as a threshold a value in [0, 1]. It is possible to avoid the use of such

a threshold using the following two approaches.

Definition 5.1 (Relative EF-based Entailment). Given an entail-

ment function E and formula ϕ, we define the entailment relation

⊢
ϕ,≥
E (resp. ⊢

ϕ,>
E ) as follows: B ⊢

ϕ
E ψ iff E (B,ψ ) ≥ E (B,ϕ) (resp.

E (B,ψ ) > E (B,ϕ)).

Definition 5.2. Given an entailment function E, we define the
entailment relation ⊢≥E (resp. ⊢>E ) as follows: B ⊢

≥
E ϕ iff E (B,ϕ) ≥

E (B,¬ϕ) (resp. E (B,ϕ) > E (B,¬ϕ)).
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