
The StarCraft Multi-Agent Challenge
Extended Abstract

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar,
Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster,

Shimon Whiteson∗

ABSTRACT
In the last few years, deep multi-agent reinforcement learning (RL)
has become a highly active area of research. A particularly challeng-
ing class of problems in this area is partially observable, cooperative,
multi-agent learning, in which teams of agents must learn to co-
ordinate their behaviour while conditioning only on their private
observations. This is an attractive research area since such prob-
lems are relevant to a large number of real-world systems and are
also more amenable to evaluation than general-sum problems.

Standardised environments such as the ALE and MuJoCo have
allowed single-agent RL to move beyond toy domains, such as grid
worlds. However, there is no comparable benchmark for coopera-
tive multi-agent RL. As a result, most papers in this field use one-off
toy problems, making it difficult to measure real progress. In this
paper, we propose the StarCraft Multi-Agent Challenge (SMAC)
as a benchmark problem to fill this gap.1 SMAC is based on the
popular real-time strategy game StarCraft II and focuses on mi-
cromanagement challenges where each unit is controlled by an
independent agent that must act based on local observations. We
offer a diverse set of challenge maps and recommendations for best
practices in benchmarking and evaluations. We also open-source
a deep multi-agent RL learning framework including state-of-the-
art algorithms.2 We believe that SMAC can provide a standard
benchmark environment for years to come.

Videos of our best agents for several SMAC scenarios are avail-
able at: https://youtu.be/VZ7zmQ_obZ0.

KEYWORDS
StarCraft; Reinforcement Learning; Multi-Agent Learning
ACM Reference Format:
Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory
Farquhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S.
Torr, Jakob Foerster, Shimon Whiteson. 2019. The StarCraft Multi-Agent
Challenge. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 3 pages.

1 INTRODUCTION
Deep reinforcement learning (RL) promises a scalable approach to
solving arbitrary sequential decision making problems, demanding
∗MS and TR contributed equally to this work. MS is with Russian-Armenian University,
Armenia. The rest of the authors are with the University of Oxford, United Kingdom.
Correspondence to mikayel@samvelyan.com and tabish.rashid@cs.ox.ac.uk
1Code is available at https://github.com/oxwhirl/smac
2Code is available at https://github.com/oxwhirl/pymarl

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(a) 3 Stalkers vs 5 Zealots (b) 2 Colossi vs 64 Zerglings

Figure 1: Decentralised micromanagement in StarCraft II.
Each unit is an independent learning agent that needs to
coordinate with its teammates to defeat the enemy units.
Shown are screenshots of two SMAC scenarios.

only that a user must specify a reward function that expresses the
desired behaviour. However, many real-world problems that might
be tackled by RL are inherently multi-agent in nature. For example,
the coordination of self-driving cars, autonomous drones, and other
multi-robot systems is becoming increasingly critical. Network
traffic routing, distributed sensing, energy distribution, and other
logistical problems are also inherently multi-agent. As such, it is
essential to develop multi-agent RL (MARL) solutions that can
handle decentralisation constraints and deal with the exponentially
growing joint action space of many agents.

Partially observable, cooperative, multi-agent learning problems
are of particular interest. Cooperative problems avoid difficulties in
evaluation inherent with general-sum games (e.g., which opponents
are evaluated against). Cooperative problems also map well to a
large class of critical problems where a single user that manages
a distributed system can specify the overall goal, e.g., minimising
traffic or other inefficiencies. Most real-world problems depend on
inputs from noisy or limited sensors, so partial observability must
also be dealt with effectively. This often includes limitations on
communication that result in a need for decentralised execution of
learned policies. However, there commonly is access to additional
information during training, which may be carried out in controlled
conditions or in simulation. This gives rise to the paradigm of
centralised training with decentralised execution, which has been
well-studied in the planning community [6, 9].

A growing number of recent works [3, 8, 11, 14] have begun to
address the problems in this space. However, there is a clear lack of
standardised benchmarks for research and evaluation. Instead, re-
searchers often propose one-off environments which can be overly
simple or tuned to the proposed algorithms. In single-agent RL,
standard environments such as the Arcade Learning Environment
[1], or MuJoCo for continuous control [10], have enabled great
progress. In this paper, we aim to follow this successful model by

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2186

https://youtu.be/VZ7zmQ_obZ0
https://github.com/oxwhirl/smac
https://github.com/oxwhirl/pymarl


offering challenging standard benchmarks for deep MARL, and to
facilitate more rigorous experimental methodology across the field.

Some testbeds have emerged for other multi-agent regimes, such
as Poker [5], Pong [16], Keepaway Soccer[13], or simple gridworld-
like environments [7, 8, 18, 19]. Nonetheless, we identify a clear
gap in challenging and standardised testbeds for the important set
of domains described above.

To fill this gap, we introduce the StarCraft Multi-Agent Chal-
lenge (SMAC). SMAC is built on the popular real-time strategy game
StarCraft II3 and makes use of the SC2LE environment [17]. Instead
of tackling the full game of StarCraft with centralised control, we
focus on decentralised micromanagement challenges (Figure 1). In
these challenges, each of our units is controlled by an independent,
learning agent that has to act based only on local observations,
while the opponent’s units are controlled by the hand-coded built-
in StarCraft II AI. We offer a diverse set of scenarios that challenge
algorithms to handle high-dimensional inputs and partial observ-
ability, and to learn coordinated behaviour even when restricted to
fully decentralised execution.

The full games of StarCraft: BroodWar and StarCraft II have
already been used as RL environments, due to the many interesting
challenges inherent to the games [15, 17]. DeepMind’s AlphaStar
[2] has recently shown an impressive level of play on a StarCraft II
matchup using a centralised controller. In contrast, SMAC is not
intended as an environment to train agents for use in full StarCraft
II gameplay. Instead, by introducing strict decentralisation and local
partial observability, we use the StarCraft II game engine to build a
new set of rich cooperative multi-agent problems that bring unique
challenges, such as the nonstationarity of learning [4], multi-agent
credit assignment [3], and the difficulty of representing the value
of joint actions [11].

To further facilitate research in this field, we also open-source
PyMARL, a learning framework that can serve as a starting point
for other researchers and includes implementations of several key
MARL algorithms. PyMARL is modular, extensible, built on Py-
Torch, and serves as a template for dealing with some of the unique
challenges of deep MARL in practice. We include results on our full
set of SMAC environments using QMIX [11] and several baseline
algorithms, and challenge the community to make progress on dif-
ficult environments in which good performance has remained out
of reach so far. We also offer a set of guidelines for best practices in
evaluations using our benchmark, including the reporting of stan-
dardised performancemetrics, sample efficiency, and computational
requirements.

We hope SMAC will serve as a valuable standard benchmark,
enabling systematic and robust progress in deep MARL for years
to come.

2 STARCRAFT MULTI-AGENT CHALLENGE
Akin to most real-time strategies, StarCraft has two main gameplay
components: macromanagement and micromanagement. Macro-
management refers to high-level strategic considerations, such as
economy and resource management.Micromanagement (micro), on
the other hand, refers to fine-grained control of individual units.

3StarCraft II is the sequel to the game StarCraft and its expansion set Brood War.
StarCraft and StarCraft II are trademarks of Blizzard EntertainmentTM .

In order to build a rich multi-agent testbed, we focus solely on
micromanagement. Micro is a vital aspect of StarCraft gameplay
with a high skill ceiling, and is practiced in isolation by amateur and
professional players. For SMAC,we leverage the natural multi-agent
structure of micromanagement by proposing a modified version
of the problem designed specifically for decentralised control. In
particular, we require that each unit be controlled by an independent
agent that conditions only on local observations restricted to a
limited field of view centred on that unit. Groups of these agents
must be trained to solve challenging combat scenarios, battling an
opposing army under the centralised control of the game’s built-in
scripted AI.

Proper micro of units during battles will maximise the dam-
age dealt to enemy units while minimising damage received, and
requires a range of skills. For example, one important technique
is focus fire, i.e., ordering units to jointly attack and kill enemy
units one after another. When focusing fire, it is important to avoid
overkill: inflicting more damage to units than is necessary to kill
them. Other commonmicromanagement techniques include: assem-
bling units into formations based on their armour types, making
enemy units give chase while maintaining enough distance so that
little or no damage is incurred (kiting), coordinating the positioning
of units to attack from different directions or taking advantage of
the terrain to defeat the enemy.

Learning these rich cooperative behaviours under partial ob-
servability is a challenging task, which can be used to evaluate the
effectiveness of MARL algorithms.

Scenarios. SMAC consists of 22 StarCraft II micro scenarios
which aim to evaluate how well independent agents are able to
learn coordination to solve complex tasks. These scenarios are
carefully designed to necessitate the learning of one or more mi-
cromanagement techniques to defeat the enemy. Each scenario is
a confrontation between two armies of units. The initial position,
number, and type of units in each army varies from scenario to
scenario, as does the presence or absence of elevated or impassable
terrain. Figure 1 includes screenshots of two SMACmicro scenarios.

The first army is controlled by the learned allied agents. The
second army consists of enemy units controlled by the built-in
game AI, which uses carefully handcrafted non-learned heuristics.
An episode ends when all units of either army have died or when a
pre-specified time limit is reached.

3 RESULTS AND CONCLUSIONS
For a more detailed description of the 22 scenarios available in
SMAC, recommendations for reporting evaluations and a thorough
report and discussion of several state-of-the-art MARL algorithms
such as QMIX and COMA please see [12].

In the near future, we aim to extend SMACwith new challenging
scenarios that feature a more diverse set of units and require a
higher level of coordination amongst agents. Particularly, we plan to
make use of the rich skill set of StarCraft II units, and host scenarios
that require the agents to utilise the features of the terrain. With
harder multi-agent coordination problems, we aim to explore the
gaps in existing MARL approaches and motivate further research in
this domain, particularly in areas such as multi-agent exploration
and coordination.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2187



REFERENCES
[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. 2013. The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research 47 (jun 2013), 253–279.

[2] DeepMind. 2019. AlphaStar: Mastering the Real-Time Strat-
egy Game StarCraft II. (2019). https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/

[3] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.

[4] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip
H. S. Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. Stabilising Experience
Replay for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning. 1146–1155.

[5] Johannes Heinrich and David Silver. 2016. Deep Reinforcement Learning
from Self-Play in Imperfect-Information Games. CoRR abs/1603.01121 (2016).
arXiv:1603.01121 http://arxiv.org/abs/1603.01121

[6] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[7] Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-
pel. 2017. Multi-agent Reinforcement Learning in Sequential Social Dilemmas.
(Feb. 2017). http://arxiv.org/abs/1702.03037 arXiv: 1702.03037.

[8] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
(June 2017). http://arxiv.org/abs/1706.02275 arXiv: 1706.02275.

[9] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. 2008. Optimal and
Approximate Q-value Functions for Decentralized POMDPs. JAIR 32 (2008),
289–353.

[10] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder,
Vikash Kumar, and Wojciech Zaremba. 2018. Multi-Goal Reinforcement Learn-
ing: Challenging Robotics Environments and Request for Research. (2018).
arXiv:arXiv:1802.09464

[11] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-
sation for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 35th

International Conference on Machine Learning. 4295–4304.
[12] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,
Jakob Foerster, and ShimonWhiteson. 2019. The StarCraft Multi-Agent Challenge.
CoRR abs/1902.04043 (2019).

[13] Peter Stone, Gregory Kuhlmann, Matthew E Taylor, and Yaxin Liu. 2005. Keep-
away soccer: From machine learning testbed to benchmark. In Robot Soccer World
Cup. Springer, 93–105.

[14] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo,
Karl Tuyls, and Thore Graepel. 2017. Value-Decomposition Networks For
Cooperative Multi-Agent Learning. arXiv:1706.05296 [cs] (June 2017). http:
//arxiv.org/abs/1706.05296 arXiv: 1706.05296.

[15] Gabriel Synnaeve, Nantas Nardelli, Alex Auvolat, Soumith Chintala, TimothÃľe
Lacroix, Zeming Lin, Florian Richoux, and Nicolas Usunier. 2016. TorchCraft:
a Library for Machine Learning Research on Real-Time Strategy Games. arXiv
preprint arXiv:1611.00625 (2016).

[16] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,
Juhan Aru, Jaan Aru, and Raul Vicente. 2015. Multiagent Cooperation and
Competition with Deep Reinforcement Learning. (Nov. 2015). http://arxiv.org/
abs/1511.08779 arXiv: 1511.08779.

[17] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich KÃĳttler, John Agapiou,
Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan,
Tom Schaul, Hado van Hasselt, David Silver, Timothy Lillicrap, Kevin Calderone,
Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo, Jacob Repp,
and Rodney Tsing. 2017. StarCraft II: A New Challenge for Reinforcement
Learning. arXiv:1708.04782 [cs] (Aug. 2017). http://arxiv.org/abs/1708.04782
arXiv: 1708.04782.

[18] Yaodong Yang, Rui Luo,Minne Li, Ming Zhou,Weinan Zhang, and JunWang. 2018.
Mean Field Multi-Agent Reinforcement Learning. arXiv preprint arXiv:1802.05438
(2018).

[19] Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu.
2017. MAgent: A Many-Agent Reinforcement Learning Platform for Artificial
Collective Intelligence. arXiv preprint arXiv:1712.00600 (2017).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2188

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1702.03037
http://arxiv.org/abs/1706.02275
http://arxiv.org/abs/arXiv:1802.09464
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/1511.08779
http://arxiv.org/abs/1511.08779
http://arxiv.org/abs/1708.04782

	Abstract
	1 Introduction
	2 Starcraft Multi-Agent Challenge
	3 Results and Conclusions
	References



