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ABSTRACT
We are considering the problem of controlling a team of robotic
bodyguards protecting a VIP from physical assault in the presence
of neutral and/or adversarial bystanders in a variety of scenarios.
This problem is challenging due to the large number of active enti-
ties with different agendas and dynamic movement patterns, the
need of cooperation between the robots as well as the requirement
to take into consideration criteria such as social norms in addi-
tion to the main goal of VIP safety. We show how a multi-agent
reinforcement learning approach can evolve behavior policies that
outperform hand-engineered approaches. Furthermore, we pro-
pose a novel multi-agent reinforcement learning algorithm inspired
by universal value function approximators that can learn policies
that exhibit appropriate, distinct behavior in environments with
different requirements.
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1 INTRODUCTION
Recent progress in the field of autonomous robotics makes it feasible
for robots to interact with multiple humans in public spaces. In this
paper, we are considering a practical problem where a human VIP
moving in various crowded scenarios is protected from physical
assault by a team of bodyguard robots. This problem has been
previously explored in [1] where explicitly programmed behaviors
of robots were used to carry out the task.

With the recent advancements in the single agent Deep RL [6, 10],
there has been a renewed interest in multi-agent reinforcement
learning (MARL) [3, 4, 8]. Despite having outstanding performance
in multiplayer games like Dota 2 [8] and Quake III Capture-the-
Flag [3], MARL algorithms have failed to learn policies that can
work in different scenarios [2].
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Providing physical protection to a VIP through robot bodyguards
is a complex task where the robots must take into account the po-
sition and movement of the VIP, the bystanders and other robots.
The variety of environments and scenarios where the bodyguards
need to act presents another challenge. We aim to solve the VIP
protection problem through multi-agent deep reinforcement learn-
ing while simultaneously learning to communicate and coordinate
between the robots. We propose a novel general purpose technique
that allows multi-agent learners to learn distributed policies not
only over the state space but also over a set of scenarios. We show
that our solution outperforms a custom designed behavior, the
quadrant load balancing method [1].

2 THE VIP PROTECTION PROBLEM
We are considering a VIP moving in a crowd of bystanders B =
{b1,b2, . . . ,bm } protected from assault by a team of robot body-
guards R = {r1, r2, . . . , rn }. To be able to reason about this problem,
we need to quantify the threat to the VIP at a given moment - the
aim of the bodyguards is to reduce this value.

Using the threat model defined in [1], the residual threat RT is
defined as the threat to the VIP protected by the bodyguards R
from a bystander b. The cumulative residual threat to the VIP over
the time period [0,T ] is defined as:

CRT =
T∫
0

1 −
k∏
i=1

(1 − RT (V IP,bi ,R))dt (1)

Our goal is to use multi-agent reinforcement learning to find a body-
guard behavior that minimizes CRT. Moreover, eq. (1) also forms
the basis of our reward function for the VIP protection problem.

3 MULTI-AGENT UNIVERSAL POLICY
GRADIENT

To solve the VIP protection problem under various scenarios, we
propose multi-agent universal policy gradient: a multi-agent deep
reinforcement learning algorithm that learns distributed policies
not only over state space but also over a set of scenarios.

Our approach uses Universal Value Function Approximators [9]
to train policies and value functions that take a state-scenario pair
as input. The outcomes are universal multi-agent policies that are
able to perform better on multiple scenarios compared to policies
trained and tested separately.

The main idea is to represent the value function approximators
for each agent i by a single unified value function approximator
that generalizes over both state space and the scenarios. For agent
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i we consider Vi (s,д;ϕ) ≈ V ∗
iд (s) or Qi (s,a,д;ϕ) ≈ Q∗

iд (s,a) that
approximate the optimal unified value functions over multiple sce-
narios and a large state space. These value functions can be used to
extract policies implicitly or as critics for policy gradient methods.
We extend the idea of MADDPG [5] with a universal functional
approximator, specifically we augment the centralized critic with
the scenario. Consider N agents with policies πππ = {π1π1π1, . . . ,πNπNπN } pa-
rameterized by θθθ = {θ1θ1θ1, . . . ,θNθNθN } learning polices overGGG scenarios.
The multi-agent universal policy gradient for agent i can written as

∇Jθi = Es ,a,д∼D

[
∇θi πi (ai |oi ,д) ∇aiQ

π
i (s,a1, . . . ,aN ,д)

]
(2)

where s = (o1, . . . ,oN ),Qπ
i (s,a1, . . . ,aN ,д) is a centralized action-

value function that takes the actions of all the agents, the state
of the environment and the scenario to estimate the Q-value for
agent i , ai = πi (oi ,д) is action from agent i following policy πi in
scenario д and D is the experience replay buffer.

4 EXPERIMENTS
To investigate the effectiveness of our proposed solution, we de-
signed four scenarios inspired from real world situations of VIP
protection and implemented them as behaviors in the Multi-Agent
Particle Environment [7]. In each scenario, the participants are the
VIP, four robot bodyguards and one or more classes of bystanders.
The scenario description contains a number of landmarks, points
on a 2D space that serve as starting point and destinations for the
goal-directed movement by the agents. For each scenario, the VIP
starts from the starting point and moves towards the destination
landmark. The VIP exhibits a path following behavior, augmented
with a social skill metric: when it is about to enter the personal
space of a bystander, it will slow down or come to a halt.

(A) Random Landmark: landmarks are placed randomly in
the area. The bystanders are performing random waypoint
navigation using the landmarks as waypoints.

(B) ShoppingMall: landmarks representing shops are placed in
fixed positions on the periphery of the area. The bystanders
visit randomly selected shops.

(C) Street: The bystanders are moving towards waypoints that
are outside the current area. However, due to their proximity
to each other, the position of the other bystanders influence
their movement described by laws of particles motion [11].

(D) Pie-in-the-Face: In this “red carpet” scenario one bystander
takes an active interest in the VIP. The Unruly bystander
breaks the limit imposed by the line and try to approach the
VIP (presumably, to throw a pie in his/her face).

The observation of agent i is the physical state of the closest
five bystanders in the environment and verbal utterances of all the
agents oi =

[
x j , ...5, ck , ...N

]
∈ Oi where x j is the observation of

the entity j from the perspective of agent i and ck is the verbal
utterance of the agent k while д is represented as a 1-hot vector.

In order to verify the claim that MARL algorithms trained on
specific scenario fail to generalize over different scenarios, we eval-
uate policies trained via MADDPG on a specific scenario and tested
on different scenarios. From the results shown in Figure 1 we can
see that MADDPG policies trained on specific scenarios performed
poorly when tested on different scenarios as compared to when

Figure 1: A confusionmatrix representing the average resid-
ual threat values of MADDPG policies trained on a spe-
cific scenario when tested on different scenarios over 100
episodes.
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Figure 2: Comparing the average residual threat values for
universal policy agents with MADDPG and QLB agents

tested on same scenario with different seeds. To tackle the general-
ization problem, we train the agents using multi-agent universal
policy gradient and compare with the results of scenario-dependant
MADDPG policies and quadrant load balancing(QLB): a hand engi-
neered technique to solve the VIP protection problem. The results
can be seen in Figure 2.

5 CONCLUSIONS
In this paper, we highlighted the generalization problem faced by
multi-agent reinforcement learning across different scenarios. To
solve that problem we presented a novel algorithm that generalizes
over both state space and scenarios. Using our solution, we solved
the problem of providing physical protection to a VIP moving in a
crowded space that outperforms state-of-the-art multi-agent rein-
forcement learning algorithm as well as quadrant load-balancing: a
hand engineered technique to solve the VIP protection problem.
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