
An Open MAS Services Architecture for the V2G/G2V Problem
Extended Abstract

Nikolaos Spanoudakis
School of Production Engineering and Management,

Technical University of Crete, Greece
nikos@amcl.tuc.gr

Charilaos Akasiadis
School of Electrical and Computer Engineering,

Technical University of Crete, Greece
akasiadi@intelligence.tuc.gr

Georgios Kechagias
School of Electrical and Computer Engineering,

Technical University of Crete, Greece
gkechagias@isc.tuc.gr

Georgios Chalkiadakis
School of Electrical and Computer Engineering,

Technical University of Crete, Greece
gehalk@intelligence.tuc.gr

ABSTRACT
In this paper we propose an original and open multi-agent system
architecture for the important and challenging to engineer vehicle-
to-grid (V2G) and grid-to-vehicle (G2V) energy transfer problem
domain. To address the features required, we define two novel
design patterns that can be usedwith statecharts inmany real-world
situations. The first one is based on the well-known factory design
pattern, and the second on the class generalization relationship.
These patterns can be coupled with ASEME, an agent-oriented
software engineering methodology that uses statecharts for the
inter- and intra-agent control models. The latter also fits well with
the FIPA standards-compliant JADE agent platform that we used
for implementation.

KEYWORDS
open multi-agent systems; smart grid; design patterns

ACM Reference Format:
Nikolaos Spanoudakis, Charilaos Akasiadis, Georgios Kechagias, and Geor-
gios Chalkiadakis. 2019. AnOpenMAS Services Architecture for the V2G/G2V
Problem. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 3 pages.

1 INTRODUCTION
In the emerging Smart Grid [1–3, 5, 13], buildings, but also vehicles,
become active consumers and producers of energy, and need to be
integrated into the Grid. Not only is the Smart Grid an electricity
network with diverse consumers and producers, it is also a dynamic
marketplace where heterogeneous devices appear and need to con-
nect [11]. To date, several Smart Grid-related business models and
information systems’ architectures have been proposed, but they
do not adhere to particular standards [7].

Such energy markets naturally reflect systems where not one
player can force others to use her products; players or stakehold-
ers can come along their own business models; and stakeholders

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

can have diverse goals in negotiating their consumption and of-
fer. Moreover, these systems allow for pro-activeness of the play-
ers who pursue their goals and sociability—as they can form dy-
namic partnerships or coalitions, but also react and /or adapt to
a changing dynamic environment. All these characteristics point
to open multiagent systems (MAS) and agent technology in gen-
eral [9, 12, 21]. To the best of our knowledge, however, existing
Smart Grid approaches fail to make proper use of existing engineer-
ing MAS research paradigms, and do not cover the aforementioned
requirements, as they are mostly closed proprietary systems. This
is particularly true for the specific sub-domain that motivated this
work, i.e., the Vehicle-to-Grid (V2G)/ Grid-to-Vehicle (G2V) prob-
lem [10, 13]. Briefly, in G2V approaches “smart charging” might not
initiate instantly upon EV connection, but can be delayed according
to various factors [14, 19, 20], e.g., renewable production levels,
demand from other EVs, pricing, and so on. Complementary to G2V,
V2G takes advantage of the storage capabilities of EV batteries, and
allows their controlled discharging for supporting the Grid during
times of energy supply shortage [6, 10].

Now, to realize an open system, agents need to use predefined
protocols to interact. However, when diverse stakeholders come in
they need to work the protocols with their own algorithms and/or
goals. In this paper we propose two new design patterns, that on
the one hand allow the developers to re-use the protocol parts and
logic defined in the framework, and on the other hand to customize
key functionality or capabilities according to their needs/goals.

2 ARCHITECTURE
We assume that agents coexist in a microgrid infrastructure that
can be interconnected with other parts of the Grid through distribu-
tion and transmission networks. When a microgrid requires power
that can not be generated locally, it can import it; while a local
energy surplus can be exported to the Grid and create additional
profits for its electricity producers, according to energy market
regulations [11].

In particular, the agent types in our system are (see Figure 1):
the (a) Electric Vehicle agents (EV), the (b) Charging Station agents
(CS), the (c) Electricity Producer agents (EP), and the (d) Electricity
Consumer agents (EC). We also assume the existence of a regulatory
service, or possibly a for-profit private service, that consists of (i)
a Station Recommender agent (SR), (ii) an Electricity Imbalance
agent (EI), and (iii) a Mechanism Design agent (MD).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2198



Charging 

Station Agent 

(CS)*

Electric 

Vehicle Agent 

(EV)*

Mechanism 

Design Agent 

(MD)

Electricity 

Consumer 

Agent (EC)*

Electricity 

Producer 

Agent (EP)*

Electricity 

Imbalance 

Agent (EI)

Station 

Recommender 

Agent (SR)

* denotes agent 

types with 

multiple instances

Figure 1: The agents and their interconnections in our
V2G/G2V architecture.

EV agents aim to optimize a utility function set by the EV owner—
e.g., always have enough energy to realize the next trip, achieve
so by the minimum cost, etc. CS agents manage the physical gate-
ways (i.e. connectors, parking slots) by which EVs connect to the
grid and create profit by charging their batteries. They can also
negotiate with EV agents regarding an existing charging agreement.
This leads to better utilization of the station infrastructure, and
maximizes its profit. The SR agent recommends to EVs a subset of
the available CS and charging slots that match most with the EVs
preferences (e.g. time of arrival/departure, distance, battery state).
The EI agent aggregates information from agents regarding their
expected energy profiles, and calculates the periods of electricity
shortage and surplus. Then, it provides the imbalance levels to all
interested parties, for them to plan their electricity consumption
and production activities. The MD agent is an intermediate trusted
third party entity, responsible for calculating dynamic prices and
managing the payments of the various contributor types. Finally,
the various EP and EC agents periodically report their predictions
on expected production and consumption levels respectively, to
enable accurate imbalance forecasts for the planning horizon.

3 DESIGN PATTERNS FOR OPEN PROTOCOLS
The architecture above poses several challenges for the rest of
the development process. Clearly, there is a need to accommodate
different methods for decision-making based on user preferences,
or on the business model of a stakeholder, or on the agent that
implements a protocol role. As an example, both EV and CS agents
have the capability to negotiate, however, it is obvious that they
will most likely employ different algorithms to do so.

Thus, we need to cater for agents following protocols to real-
ize their goals in the system, while being able to define their own
algorithms, policies or business rules. These cannot be foreseen
at design time for all future stakeholders in an open system. To
address these challenges we were inspired by the protocol mod-
ule code generation feature of ASEME [15, 16]. ASEME defines a
code generation process for the popular JADE agent platform [4]
that is ideal for open systems as it implements the FIPA standards
(Foundation of Intelligent Physical Agents, http://www.fipa.org).

The inter-agent control model of ASEME (i.e. the design phase
model for agent interactions) is a statechart and the ASEME inte-
grated development environment (IDE) [18] allows to generate code
for it and store it in its own package [17]. However, this feature is
not connected with the intra-agent control model (i.e. the design
phase model for the individual agent modules coordination) code
generation, and, even though code generation is automated, it only
generates the control code, not the action methods of the agents:
in practice, all behaviours action codes must be rewritten for each
agent. This, however, poses certain risks. The protocols’ intended
flow may be disrupted by the code of programmers, or the same
code must be rewritten in several packages.

To remedy this situation we identified two distinct cases. In the
first case, we have a decision-making behaviour—e.g., in a negotia-
tion protocol, where the objects of the negotiation are quite clear,
however, there are different strategies for the agents to employ. We
would like to allow the diverse agent developers to develop their
own strategies. Thus, a specific functionality with clear parameters
needs to be able to be supplied by the developing team: that is, the
developers need to associate a specific algorithm to a behaviour’s
action method.

Thus, we define a design pattern, where the developers need to
associate a specific algorithm to a behaviour’s action method. To
remedy this situation we relied on the well-known by practitioners
factory design pattern [8]. According to this pattern, we use a factory
method that returns an instance of a method respecting an API
which can be dynamically selected, even at run-time.

Consider now the case of SR agents: it is clear that a service
provider gets a request, processes it and then replies with an appro-
priate response. The process part, however, can be very different
and complicated, and can change not only based on policy, but also
based on the agent’s data structures and architecture. Thus, the
agent now needs to define a new capability. This time it is not just
the algorithm that changes. The implementation of this capability
may involve its engagement in other protocols or the undertaking
of many different activities. For example, a broker might want to
request a service from a third party in order to service a request.

Thus, we need another design pattern based on developing an
activity that will take place within the relevant state in the protocol.
This is not implemented in the protocol package. Now, although all
agents use the same protocol package, they each develop their own
specific state activity, or handler behaviour. The latter can be just a
simple behaviour doing a specific action or a complex behaviour
with many sub-behaviours.

4 CONCLUSION
We presented a novel architecture for the V2G/G2V energy transfer
problem domain. Our approach addresses the needs for openness,
and the coverage of diverse business models via the definition of a
number of key agent types and the development of open protocols.
These can be delivered along with the ontology to any interested
parties, which can subsequently build their own agents given their
expertise and business case. We identified two design patterns, al-
lowing participating agents (a) to dynamically select functionalities
and (b) to define their own implementations of abstract behaviours.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2199

http://www.fipa.org


REFERENCES
[1] Charilaos Akasiadis and Georgios Chalkiadakis. 2017. Cooperative electricity

consumption shifting. Sustainable Energy, Grids and Networks 9 (2017), 38 – 58.
[2] C. Akasiadis and G. Chalkiadakis. 2017. Mechanism Design for Demand-Side

Management. IEEE Intelligent Systems 32, 1 (2017), 24–31.
[3] P. Asmus. 2010. Microgrids, Virtual Power Plants and Our Distributed Energy

Future. The Electricity Journal 23, 10 (2010), 72 – 82.
[4] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. 2008.

JADE: A software framework for developing multi-agent applications. Lessons
learned. Information and Software Technology 50, 1 (2008), 10 – 21. https://doi.
org/10.1016/j.infsof.2007.10.008

[5] M. J. Burke and J. C. Stephens. 2017. Energy democracy: Goals and policy
instruments for sociotechnical transitions. Energy Research & Social Science 33
(2017), 35 – 48. Policy mixes for energy transitions.

[6] F. Christianos and G. Chalkiadakis. 2016. Efficient Multi-criteria Coalition Forma-
tion Using Hypergraphs (with Application to the V2G Problem). In Multi-Agent
Systems and Agreement Technologies - 14th European Conference, EUMAS 2016,
and 4th International Conference, AT 2016, Valencia, Spain, December 15-16, 2016.
92–108.

[7] E. Espe, V. Potdar, and E. Chang. 2018. Prosumer Communities and Relationships
in Smart Grids: A Literature Review, Evolution and Future Directions. Energies
11, 10 (2018), 2528.

[8] E. Gamma. 1995. Design patterns : elements of reusable object-oriented software.
Addison-Wesley, Reading, Mass.

[9] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. 2006. An integrated trust
and reputation model for open multi-agent systems. Autonomous Agents and
Multi-Agent Systems 13, 2 (2006), 119–154.

[10] W. Kempton, J. Tomic, S. Letendre, A. Brooks, and T. Lipman. 2001. Vehicle-to-Grid
Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric
Power in California. Institute of Transportation Studies, Working Paper Series
qt0qp6s4mb. Institute of Transportation Studies, UC Davis. https://ideas.repec.
org/p/cdl/itsdav/qt0qp6s4mb.html

[11] W. Ketter, J. Collins, and P. Reddy. 2013. Power TAC: A competitive economic
simulation of the smart grid. Energy Economics 39 (2013), 262 – 270.

[12] P. Papadopoulos, N. Jenkins, L. M. Cipcigan, I. Grau, and E. Zabala. 2013. Coordi-
nation of the Charging of Electric Vehicles Using a Multi-Agent System. IEEE
Transactions on Smart Grid 4, 4 (Dec 2013), 1802–1809.

[13] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R. Jennings. 2012. Putting the
’smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun.
ACM 55, 4 (2012), 86–97.

[14] A. Seitaridis, E. S. Rigas, N. Bassiliades, and S. D. Ramchurn. 2015. Towards
an Agent-Based Negotiation Scheme for Scheduling Electric Vehicles Charging.
In Multi-Agent Systems and Agreement Technologies - 13th European Conference,
EUMAS 2015, and Third International Conference, Athens, Greece, December 17-18,
2015. 157–171.

[15] Nikolaos Spanoudakis. 2009. The Agent Systems Engineering Methodology
(ASEME). Ph.D. Dissertation. Paris Descartes University.

[16] Nikolaos Spanoudakis and Pavlos Moraitis. 2011. Using ASEME Methodology for
Model-Driven Agent Systems Development. In Agent-Oriented Software Engineer-
ing XI, Danny Weyns and Marie-Pierre Gleizes (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 106–127.

[17] N. I. Spanoudakis and P. Moraitis. 2010. Modular JADE Agents Design and Imple-
mentation Using ASEME. In Proceedings of the 2010 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT 2010, Toronto, Canada, August 31 -
September 3, 2010. 221–228.

[18] N. I. Spanoudakis and P. Moraitis. 2015. Engineering Ambient Intelligence
Systems Using Agent Technology. IEEE Intelligent Systems 30, 3 (2015), 60–67.

[19] K. Valogianni, W. Ketter, J. Collins, and D. Zhdanov. 2014. Effective Management
of Electric Vehicle Storage Using Smart Charging. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada. 472–478.

[20] M. G. Vayá and G. Andersson. 2012. Centralized and decentralized approaches
to smart charging of plug-in Vehicles. In 2012 IEEE Power and Energy Society
General Meeting. 1–8.

[21] M. Wooldridge and N. R. Jennings. 1995. Intelligent Agents: Theory and Practice.
Knowledge Engineering Review 10 (1995), 115–152.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2200

https://doi.org/10.1016/j.infsof.2007.10.008
https://doi.org/10.1016/j.infsof.2007.10.008
https://ideas.repec.org/p/cdl/itsdav/qt0qp6s4mb.html
https://ideas.repec.org/p/cdl/itsdav/qt0qp6s4mb.html

	Abstract
	1 Introduction
	2 Architecture
	3 Design Patterns for Open Protocols
	4 Conclusion
	References



