Extended Abstract

AAMAS 2019, May 13-17, 2019, Montréal, Canada

General-Sum Cyber Deception Games under Partial Attacker
Valuation Information
Extended Abstract

Ombkar Thakoor, Milind Tambe,
Phebe Vayanos

University of Southern California
Los Angeles, CA
{othakoor,tambe,vayanou}@usc.edu

ABSTRACT

The rapid increase in cybercrime, causing a reported annual eco-
nomic loss of $600 billion [20], has prompted a critical need for
effective cyber defense. Strategic criminals conduct network recon-
naissance prior to executing attacks to avoid detection and establish
situational awareness via scanning and fingerprinting tools. Cyber
deception attempts to foil these reconnaissance efforts; by disguis-
ing network and system attributes, among several other techniques.
Cyber Deception Games (CDG) is a game-theoretic model for op-
timizing strategic deception, and can apply to various deception
methods. Recently introduced initial model for CDGs assumes zero-
sum payoffs, implying directly conflicting attacker motives, and
perfect defender knowledge on attacker preferences. These unrealis-
tic assumptions are fundamental limitations of the initial zero-sum
model, which we address by proposing a general-sum model that
can also handle uncertainty in the defender’s knowledge.
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1 INTRODUCTION

The ubiquity of Internet connectivity has spurred a vast increase in
cybercrime. Recent major attacks include data breaches at Equifax
[15], Yahoo [14], as well as government agencies like OPM [24].
Rather than attempting “brute force” exploits, which can lead to
detection and arrest, adept attackers conduct reconnaissance as
the first stage for an effective cyber attack [16, 22]. Scanning tools
such as NMap [21], xProbe2 [3], or fingerprinting techniques like
sinFP [4], are used to identify vulnerabilities to develop specific
plans to infiltrate the network without the risk of detection.

A defensive measure for mitigating the reconnaissance abili-
ties of attackers is using deception and concealment techniques to
make it more difficult to gain an accurate understanding of the true
network configuration. Additional uncertainty about the network

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Haifeng Xu
Harvard University
Cambridge, MA
hxu@seas.harvard.edu

2215

Christopher Kiekintveld
University of Texas at El Paso
El Paso, TX
cdkiekintveld@utep.edu

can lead attackers to spend more time in reconnaissance efforts
or alter their tactics for infiltration, boost the chances of detect-
ing their activities, and consequently reduce the efficacy of the
infiltration strategies attempted. Examples of cyber deception tech-
niques include the use of honeypots or decoys [13], real systems
using deceptive defenses [10], obfuscated responses to fingerprint-
ing [5, 27], and software-defined networking to obfuscate network
infrastructure [1]. Canary [31] is a deception-based tool in real-
world deployment, while CyberVAN [8] is a test-bed for simulating
various deception algorithms.

Effective strategizing is particularly vital due to costs and feasibil-
ity constraints that must be satisfied. Some ways of masking may be
infeasible due to interference with functionality of the network for
legitimate users. Deception via counter-fingerprinting techniques
such as HoneyD, OSfuscate, IPMorph etc. typically costs perfor-
mance degradation [27]. Typically, one must also consider costs of
developing, deploying, and maintaining deceptive strategies which
may include both computational resources and developer time.

Another key challenge is modeling the preferences and capa-
bilities of the attacker. The attacker’s motives can greatly vary —
they may exactly conflict the defender’s, or they could be orthog-
onal. E.g., the attacker could be economically motivated whereas
the defender may prioritize protecting the information on national
security. Often, the preferences may be strongly governed by the
available exploits. Given such diversely motivated and equipped
real-world adversaries, it is often impossible to know precise infor-
mation about them, prompting the need to account for uncertainty
in defender’s knowledge when modeling the attacker.

A game-theoretic approach allows to capture the adverserial
nature of the attackers. The Cyber Deception Game (CDG) [28] is
a game theoretic model of deception via concealment of the real
configuration of the network to mitigate attacker reconnaissance.
Yet, it is limited to zero-sum games, and thus, also cannot handle
situations where the defender does not accurately know attacker’s
preferences. We propose a general-sum model which allows the
players’ preferences to be different, and paves the way for the prob-
lem arising from the defender’s uncertainty about the attacker’s
payoffs. Another model of this kind is the Two Stage Deception
Game model [32] which considers reconnaissance in two different
stages, however, this too relies on the perfect defender knowledge.

The AHEAD architecture for active defense [10] provides a real-
istic architecture for deploying the deceptive strategies in which
real hosts attempt to disguise themselves actively. However, it does
not consider the strategic question we address about optimizing
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the use of these capabilities under practical constraints. Game the-
oretic approaches have been adopted to model other problems in
cyber defense [2, 19, 29, 30], including several that consider using
game theory to strategically deploy honeypots for cyber decep-
tion [11, 12, 25]. However, these models do not consider the pos-
sibility of concealing or disguising the configuration of the real
network, as our model does. Previous works have also considered
uncertainty about the adversary in security games, however, the
results are not applicable due to the specific constraints and ob-
jectives of CDGs. These include work on modeling uncertainty
about human attackers [26], Bayesian [18] and interval-based ap-
proaches [17] for modeling uncertainty in basic security games,
and regret-based approaches similar to ours but for other types of
security games [23] that do not apply to CDGs.

2 MODEL

Various components of the General-sum CDG model are as follows.

Network Configurations. We view the network as a set K of
machines. Each machine has a true configuration (TC), which can
be thought of as a tuple of several attributes such as [OS Linux,
Webserver TomCat 8]. Thus, it is an abstract and exhaustive cate-
gorization of a machine from the security perspective. 7 denotes
the set of TCs present in the network. The true state of the network
(TSN) is defined by a vector n = (n;);c ;7 where each n; is the no.
of machines having TC i. Through deception techniques, the de-
fender “masks” each machine with an observed configuration (OC);
J denotes the set of all possible OCs.

Deception Strategies. The defender’s deception strategy can be
encoded with an integer matrix ®, where ®;; denotes the number of
machines with TC i, that are masked with OC j. The observed state
of the network (OSN) is, unlike the TSN, a function of the deception
strategy, given by m(®) := (m;(®))je g, where mj(®) = ¥; ®;; is
the no. of machines masked by OC j, under strategy .

Strategy feasibility and costs. Achieving deception is often
costly and not arbitrarily feasible. Hence, we have feasibility con-
straints, denoted by a (0,1)-matrix II, where IT;; = 1iff TC i can be
masked with OC j. Further, we assume that masking a TC i with an
OC j has a net cost of ¢;j incurred by the defender. The defender
requires the total cost of masking to not exceed a limit B, called
the budget. ¥ denotes the set of strategies that are feasible and
affordable — ¥ can be described with linear constraints.

Defender and Attacker Valuations. If the attacker procures
a machine with TC i, he gets a utility v, his valuation of TC i.
Collectively, these are represented as a vector ©?. Analogously, we
define valuations v for the defender; a higher valuation vl’.j reflects
a smaller loss when TC i is compromised.

Game Model. Then, we consider a Stackelberg game where the
defender is the leader who knows TSN n and plays a deception
strategy ®. The attacker is the follower, who then chooses a machine
to attack. Since only the OC distinguishes the machine from the
attacker’s perspective, he must choose an OC to attack as his best
response, based on their expected utilities (described momentarily)
and randomly attack a machine masked by this OC.

We assume that the defender can only play a pure strategy since
it is usually not possible to change the network frequently, making
the attacker’s view of the network static. We assume the attacker
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perfectly knows this defender strategy ® with which he can com-
pute his best response. This assumption on the attacker’s knowl-
edge is carried from the earlier work on CDG [28], and justified via
insider information leakage or other means of surveillance.

Thus, when the defender plays a strategy @, her expected utility
when OC j is attacked (with m;(®) > 0), is given by

(I)..
ul(@.)) = Blef|og] = D Fleef = ) o= e.
iel; ier"

The attacker’s expected utility is similarly defined, and denoted as
u?(®, j, v?) since it depends on the attacker valuations.

CDG Example: Consider a CDG with 6 machines, 4 TCs and
3 OCs. Let the TSN be n = (2,2, 1,1). Let the valuations be vl =
(8,2,7,11) and v* = (7,2,5,11). Let J; = {1}, > = {2}, F
{1,3} and g3 = {2, 3}. Let the costs be c3; = 5, and ¢;; = 1 for all
other feasible (i, j) pairs, and let the budget B = 7. Thus, machines
with TC 1 and 2 have only 1 choice of OC to mask due to feasibility
constraint. Masking TC 3 with OC 1 at cost 5 is too expensive, since
masking the remaining machines costs at least 3. Thus, due to the
budget constraint, TC 3 has OC 3 as the unique choice. Thus,

2 0 0 2 0 0
) lo 2 0 , o 2 0
F=12= 0 0 1 » = 0 0 1
0 1 0 0 0 1

If the defender plays @, attacker’s best response is to attack OC 1,
yielding expected utilities u?(®, 1, »®) = 7, and ud(®, 1) = 8 for the
attacker and the defender, respectively.

3 OPTIMIZATION PROBLEM

Previous works on Stackelberg games for security domains have
typically adopted Strong Stackelberg equilibrium (SSE) as the so-
lution concept, which requires mixed strategies to be feasible for
guaranteed inducibility. Since CDG only allows pure strategies to
the defender, adopting SSE is unjustified. Hence, we consider the
robust assumption that the attacker breaks ties against the defender,
i.e., minimizing her utility, which leads to a Weak Stackelberg Equi-
librium (WSE) [7]. Consequently, the defender obtains a utility
w™n(d, v?) as given by the following optimization problem (OP):

min u(®, ) | u¥(®, j,0%) > u¥(@,j,0%) Vi’ € T. (1)
J

Hence, the defender needs to choose ® to maximize 1™ (d, v?),
making this a bi-level optimization problem. A WSE can be guaran-
teed to exist here, since the leader only plays from a finite set of pure
strategies. It has been shown that in the zero-sum setting, when
the constraints on feasibility and budget are absent, an optimal
strategy is simply to mask all the machines by the same OC [28].
However, such a strategy can be shown to be suboptimal with
counter-examples in the general-sum setting.

A key domain challenge is that the defender may not accurately
know the attacker’s valuations for different TCs. These situations
can be modeled by extending the formulation above to incorporate
notions of robustness, e.g., minimax regret (MMR) [6, 9].
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