
Monte Carlo Continual Resolving for Online Strategy
Computation in Imperfect Information Games

Michal Šustr

michal.sustr@aic.fel.cvut.cz

Vojtěch Kovařík

vojta.kovarik@gmail.com

Artificial Intelligence Center, FEE

Czech Technical University

Prague, Czech Republic

Viliam Lisý

viliam.lisy@fel.cvut.cz

ABSTRACT
Online game playing algorithms produce high-quality strategies

with a fraction of memory and computation required by their of-

fline alternatives. Continual Resolving (CR) is a recent theoreti-

cally sound approach to online game playing that has been used

to outperform human professionals in poker. However, parts of

the algorithm were specific to poker, which enjoys many proper-

ties not shared by other imperfect information games. We present

a domain-independent formulation of CR applicable to any two-

player zero-sum extensive-form games (EFGs). It works with an

abstract resolving algorithm, which can be instantiated by various

EFG solvers. We further describe and implement its Monte Carlo

variant (MCCR) which uses Monte Carlo Counterfactual Regret

Minimization (MCCFR) as a resolver. We prove the correctness of

CR and show an O(T−1/2)-dependence of MCCR’s exploitability

on the computation time. Furthermore, we present an empirical

comparison of MCCR with incremental tree building to Online

Outcome Sampling and Information-set MCTS on several domains.

KEYWORDS
counterfactual regret minimization; resolving; imperfect informa-

tion; Monte Carlo; online play; extensive-form games; Nash equi-

librium

ACM Reference Format:
Michal Šustr, Vojtěch Kovařík, and Viliam Lisý. 2019. Monte Carlo Continual

Resolving for Online Strategy Computation in Imperfect Information Games.

In Proc. of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019,
IFAAMAS, 9 pages.

1 INTRODUCTION
Strategies for playing games can be pre-computed offline for all
possible situations, or computed online only for the situations that

occur in a particular match. The advantage of the offline computa-

tion are stronger bounds on the quality of the computed strategy.

Therefore, it is preferable if we want to solve a game optimally. On

the other hand, online algorithms can produce strong strategies

with a fraction of memory and time requirements of the offline

approaches. Online game playing algorithms have outperformed

humans in Chess [14], Go [27], and no-limit Poker [3, 22].

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

While online approaches have always been the method of choice

for strong play in perfect information games, it is less clear how

to apply them in imperfect information games (IIGs). To find the

optimal strategy for a specific situation in an IIG, a player has to

reason about the unknown parts of the game state. They depend

on the (possibly unobservable) actions of the opponent prior to the

situation, which in turn depends on what the optimal decisions

are for both players in many other parts of the game. This makes

the optimal strategies in distinct parts of the game closely interde-

pendent and makes correct reasoning about the current situation

difficult without solving the game as a whole.

Existing online game playing algorithms for imperfect informa-

tion games either do not provide any guarantees on the quality of

the strategy they produce [8, 9, 21], or require the existence of a

compact heuristic evaluation function and a significant amount of

computation to construct it [4, 22]. Moreover, the algorithms that

are theoretically sound were developed primarily for Texas hold’em

poker, which has a very particular information structure. After the

initial cards are dealt, all of the actions and chance outcomes that

follow are perfectly observable. Furthermore, since the players’

moves alternate, the number of actions taken by each player is

always known. None of this holds in general for games that can be

represented as two-player zero-sum extensive-form games (EFGs).

In a blind chess [8], we may learn we have lost a piece, but not nec-

essarily which of the opponent’s pieces took it. In visibility-based

pursuit-evasion [25], we may know the opponent remained hidden,

but not in which direction she moved. In phantom games [28], we

may learn it is our turn to play, but not how many illegal moves

has the opponent attempted. Because of these complications, the

previous theoretically sound algorithms for imperfect-information

games are no longer directly applicable.

The sole exception is Online Outcome Sampling (OOS) [20]. It is

theoretically sound, completely domain independent, and it does

not use any pre-computed evaluation function. However, it starts

all its samples from the beginning of the game, and it has to keep

sampling actions that cannot occur in the match anymore. As a

result, its memory requirements grow as more and more actions

are taken in the match, and the high variance in its importance

sampling corrections slows down the convergence.

We revisit the Continual Resolving algorithm (CR) introduced

in [22] for poker and show how it can be generalized in a way

that can handle the complications of general two-player zero-sum

EFGs. Based on this generic algorithm, we introduce Monte Carlo

Continual Resolving (MCCR), which combines MCCFR [18] with

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

224

incremental construction of the game tree, similarly to OOS, but

replaces its targeted sampling scheme by Continual Resolving. This

leads to faster sampling since MCCR starts its samples not from the

root, but from the current point in the game. It also decreases the

memory requirements by not having to maintain statistics about

parts of the game no longer relevant to the current match. Further-

more, it allows evaluating continual resolving in various domains,

without the need to construct expensive evaluation functions.

We prove that MCCR’s exploitability approaches zero with in-

creasing computational resources and verify this property empiri-

cally in multiple domains. We present an extensive experimental

comparison of MCCR with OOS, Information-set Monte Carlo Tree

Search (IS-MCTS) [9] and MCCFR. We show that MCCR’s per-

formance heavily depends on its ability to quickly estimate key

statistics close to the root, which is good in some domains, but

insufficient in others.

2 BACKGROUND
We now describe the standard notation for IIGs and MCCFR.

2.1 Imperfect Information Games
We focus on two-player zero-sum extensive-form games with im-

perfect information. Based on [24], game G can be described by

• H – the set of histories, representing sequences of actions.

• Z – the set of terminal histories (those z ∈ H which are not

a prefix of any other history). We use д ⊏ h to denote the

fact that д is equal to or a prefix of h.
• A(h) := {a | ha ∈ H} denotes the set of actions available at
a non-terminal history h ∈ H \ Z. The term ha refers to a

history, i.e. child of history h by playing a.
• P : H \ Z → {1, 2, c} is the player function partitioning

non-terminal histories into H1, H2 and Hc depending on

which player chooses an action at h. Player c is a special

player, called “chance” or “nature”.

• The strategy of chance is a fixed probability distribution σc
over actions in chance player’s histories.

• The utility function u = (u1,u2) assigns to each terminal

history z the rewards u1(z),u2(z) ∈ R received by players 1

and 2 upon reaching z. We assume that u2 = −u1.

• The information-partitionI = (I1,I2) captures the imperfect

information of G . For each player i ∈ {1, 2}, Ii is a partition
ofHi . If д,h ∈ Hi belong to the same I ∈ Ii then i cannot
distinguish between them. Actions available at infoset I are
the same as in each history h of I , therefore we overload

A(I) := A(h). We only consider games with perfect recall,
where the players always remember their past actions and

the information sets visited so far.

A behavioral strategy σi ∈ Σi of player i assigns to each I ∈ Ii
a probability distribution σ (I) over available actions a ∈ A(I). A
strategy profile (or simply strategy) σ = (σ1,σ2) ∈ Σ1 × Σ2 consists

of strategies of players 1 and 2. For a player i ∈ {1, 2}, −i will be
used to denote the other two actors {1, 2, c} \ {i} inG (for example

H−1 := H2 ∪Hc) and oppi denotes i’s opponent (opp1
:= 2).

2.2 Nash Equilibria and Counterfactual Values
The reach probability of a history h ∈ H under σ is defined as

πσ (h) = πσ
1
(h)πσ

2
(h)πσc (h), where each πσi (h) is a product of prob-

abilities of the actions taken by player i between the root and h.
The reach probabilities πσi (h |д) and πσ (h |д) conditional on be-

ing in some д ⊏ h are defined analogously, except that the prod-

ucts are only taken over the actions on the path between д and

h. Finally, πσ
−i (·) is defined like πσ (·), except that in the product

πσ
1
(·)πσ

2
(·)πσc (·) the term πσi (·) is replaced by 1.

The expected utility for player i of a strategy profile σ is ui (σ) =∑
z∈Z πσ (z)ui (z). The profile σ is an ϵ-Nash equilibrium (ϵ-NE) if

(∀i ∈ {1, 2}) : ui (σ) ≥ max

σ ′i ∈Σi
ui (σ

′
i ,σoppi) − ϵ .

A Nash equilibrium (NE) is an ϵ-NE with ϵ = 0. It is a standard

result that in two-player zero-sum games, all σ ∗ ∈ NE have the

same ui (σ
∗) [24]. The exploitability expl(σ) of σ ∈ Σ is the average

of exploitabilities expli (σ), i ∈ {1, 2}, where

expli (σ) := ui (σ
∗) − min

σ ′
oppi ∈Σoppi

ui (σi ,σ
′
oppi
).

The expected utility conditional on reaching h ∈ H is

uσi (h) =
∑

h⊏z∈Z

πσ (z |h)ui (z).

An ingenious variant of this concept is the counterfactual value
(CFV) of a history, defined as vσi (h) := πσ

−i (h)u
σ
i (h), and the coun-

terfactual value of taking an action a at h, defined as vσi (h,a) :=

πσ
−i (h)u

σ
i (ha). We set vσi (I) :=

∑
h∈I v

σ
i (h) for I ∈ Ii and define

vσi (I ,a) analogously. A strategy σ⋆
2
∈ Σ2 is a counterfactual best re-

sponseCBR(σ1) toσ1 ∈ Σ1 ifv
(σ1,σ⋆

2
)

2
(I) = maxa∈A(I)v

(σ1,σ⋆
2
)

2
(I ,a)

holds for each I ∈ I2 [7].

2.3 Monte Carlo CFR
For a strategy σ ∈ Σ, I ∈ Ii and a ∈ A(I), we set the counterfactual
regret for not playing a in I under strategy σ to

rσi (I ,a) := vσi (I ,a) −v
σ
i (I). (1)

The Counterfactual Regret minimization (CFR) algorithm [29] gen-

erates a consecutive sequence of strategies σ 0,σ 1, . . . , σT in such

a way that the immediate counterfactual regret

R̄ti, imm
(I) := max

a∈A(I)
R̄ti, imm

(I ,a) := max

a∈A(I)

1

t

t∑
t ′=1

rσ
t ′

i (I ,a)

is minimized for each I ∈ Ii , i ∈ {1, 2}. It does this by using the

Regret Matching update rule [1, 12]:

σ t+1(I ,a) :=
max{R̄ti, imm

(I ,a), 0}∑
a′∈A(I)max{R̄ti, imm

(I ,a′), 0}
. (2)

Since the overall regret is bounded by the sum of immediate coun-

terfactual regrets [29, Theorem 3], this causes the average strategy

σ̄T (defined by (3)) to converge to a NE [18, Theorem 1]:

σ̄T (I ,a) :=

∑T
t=1

πσ
t

i (I)σ
t (I ,a)∑T

t=1
πσ

t

i (I)
(where I ∈ Ii). (3)

In other words, by accumulating immediate cf. regrets at each

information set from the strategies σ 0, . . . ,σ t , we can produce new

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

225

strategy σ t+1
. However only the average strategy is guaranteed

to converge to NE with O(1/
√
T) – the individual regret matching

strategies can oscillate. The initial strategy σ 0
is uniform, but in

fact any strategy will work. If the sum in the denominator of update

rule (2) is zero, σ t+1(I ,a) is set to be also uniform.

The disadvantage of CFR is the costly need to traverse the whole

game tree during each iteration. Monte Carlo CFR [18] works sim-

ilarly, but only samples a small portion of the game tree each it-

eration. It calculates sampled variants of CFR’s variables, each of

which is an unbiased estimate of the original [18, Lemma 1]. We use

a particular variant of MCCFR called Outcome Sampling (OS) [18].

OS only samples a single terminal history z at each iteration, using

the sampling strategy σ t,ϵ := (1 − ϵ)σ t + ϵ · rnd, where ϵ ∈ (0, 1]
controls the exploration and rnd(I ,a) := 1

|A(I) | .

This z is then traversed forward (to compute each player’s prob-

ability πσ
t

i (h) of playing to reach each prefix of z) and backward

(to compute each player’s probability πσ
t

i (z |h) of playing the re-

maining actions of the history). During the backward traversal, the

sampled counterfactual regrets at each visited I ∈ I are computed

according to (4) and added to R̃Ti, imm
(I):

r̃σ
t

i (I ,a) :=

{
wI · (π

σ t (z |ha) − πσ
t
(z |h)) if ha ⊏ z

wI · (0 − π
σ t (z |h)) otherwise

, (4)

where h denotes the prefix of z which is in I and wI stands for
1

π σ t,ϵ (z)
πσ

t

−i (z |h)ui (z) [17].

3 DOMAIN-INDEPENDENT FORMULATION
OF CONTINUAL RESOLVING

The only domain for which continual resolving has been previously

defined and implemented is poker. Poker has several special prop-

erties: a) all information sets have a fixed number of histories of

the same length, b) public states have the same size and c) only a

single player is active in any public state.

There are several complications that occur in more general EFGs:

(1) We might be asked to take several turns within a single public

state, for example in phantom games. (2) When we are not the

acting player, we might be unsure whether it is the opponent’s

or chance’s turn. (3) Finally, both players might be acting within

the same public state, for example a secret chance roll determines

whether we get to act or not.

In this section, we present an abstract formulation of continual

resolving robust enough to handle the complexities of general EFGs.

However, we first need to define the concepts like public tree and

resolving gadget more carefully.

3.1 Subgames and the Public Tree
To speak about the information available to player i in histories

where he doesn’t act, we use augmented information sets. For player
i ∈ {1, 2} and history h ∈ H \Z, the i’s observation history ®Oi (h) in
h is the sequence (I1,a1, I2,a2, . . .) of the information sets visited

and actions taken by i on the path to h (incl. I ∋ h if h ∈ Hi). Two

histories д,h ∈ H \ Z belong to the same augmented information
set I ∈ Iaugi if ®Oi (д) = ®Oi (h). This is equivalent to the definition

from [7], except that our definition makes it clear that I
aug

i is also

defined onHi (and coincides there withIi because of perfect recall).

Remark 3.1 (Alternatives to Iaug). Iaug isn’t the only viable
way of generalizing information sets. One could alternatively consider
some further-unrefineable perfect-recall partition I∗i of H which
coincides with Ii onHi , and many other variants between the two
extremes. We focus only on Iaug, since an in-depth discussion of the
general topic would be outside of the scope of this paper.

We use ∼ to denote histories indistinguishable by some player:

д∼h ⇐⇒ ®O1(д) = ®O1(h) ∨ ®O2(д) = ®O2(h).

By ≈ we denote the transitive closure of ∼. Formally, д ≈ h iff

(∃n) (∃h1, . . . ,hn) : д∼h1, h1∼h2, . . . , hn−1∼hn , hn ∼h.

If two states do not satisfy д ≈ h, then it is common knowledge

that both players can tell them apart.

Definition 3.2 (Public state). Public partition is any partition S of

H \Z whose elements are closed under ∼ and form a tree. An ele-

ment S of such S is called a public state. The common knowledge
partition S

ck
is the one consisting of the equivalence classes of ≈.

Our definition of S is a reformulation of the definition of [15] in

terms of augmented information sets (which aren’t used in [15]).

The definition of S
ck

is novel. We endow any S with the tree

structure inherited fromH . Clearly,S
ck

is the finest public partition.

The concept of a public state is helpful for introducing imperfect-

information subgames (which aren’t defined in [15]).

Definition 3.3 (Subgame). A subgame rooted at a public state S is

the set G(S) := {h ∈ H | ∃д ∈ S : д ⊏ h}.

For comparison, [7] defines a subgame as “a forest of trees, closed

under both the descendant relation and membership within I
aug

i
for any player”. For any h ∈ S ∈ S

ck
, the subgame rooted at S is the

smallest [7]-subgame containing h. As a result, [7]-subgames are

“forests of subgames rooted at common-knowledge public states”.

We can see that finer public partitions lead to smaller subgames,

which are easier to solve. In this sense, the common-knowledge

partition is the “best one”. However, finding S
ck

is sometimes non-

trivial, which makes the definition of general public states from [15]

important. The drawback of this definition is its ambiguity — indeed,

it allows for extremes such as grouping the wholeH into a single

public state, without giving a practical recipe for arriving at the

“intuitively correct” public partition.

3.2 Aggregation and the Upper Frontier
Often, it is useful to aggregate reach probabilities and counterfactual

values over (augmented) information sets or public states. In general

EFGs, an augmented information set I ∈ I
aug

i can be “thick”, i.e. it

can contain both some ha ∈ H and it’s parent h. This necessarily
happens when we are unsure how many actions were taken by

other players between our two successive actions. For such I , we
only aggregate over the “upper frontier” Î := {h ∈ I | ∄д ∈ I : д ⊏
h &д , h} of I [10, 11]: We overload πσ (·) as πσ (I) :=

∑
h∈Î π

σ (h)

and vσi (·) as v
σ
i (I) :=

∑
h∈Î v

σ
i (h). We define Ŝ for S ∈ S, πσi (I),

πσ
−i (I) and v

σ
i (I ,a) analogously. By Ŝ(i) := {I ∈ I

aug

i | Î ⊆ Ŝ} we
denote the topmost (augmented) information sets of player i in S .

To the best of our knowledge, the issue of “thick” information

sets has only been discussed in the context of non-augmented

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

226

Figure 1: Resolving game G̃ (S,σ , ṽ) constructed for player △
in a public state S . Player’s (augmented) information sets are
drawn with solid (resp. dashed) lines of the respective color.
The chance node ⃝ chooses one of ▽’s histories ˜h1, ˜h2, ˜h3,
which correspond to the “upper frontier” of S .

information sets in games with imperfect recall [11]. One scenario

where thick augmented information sets cause problems is the

resolving gadget game, which we discuss next.

3.3 Resolving Gadget Game
We describe a generalization of the resolving gadget game from [7]

(cf. [3, 23]) for resolving Player 1’s strategy (see Figure 1).

Let S ∈ S be a public state to resolve from, σ ∈ Σ, and let

ṽ(I) ∈ R for I ∈ Ŝ(i) be the required counterfactual values. First,

the upper frontier of S is duplicated as { ˜h | h ∈ Ŝ} =: S̃ . Player 2

is the acting player in S̃ , and from his point of view, nodes
˜h are

partitioned according to {Ĩ := { ˜h | h ∈ Î } | I ∈ Ŝ(2)}. In ˜h ∈ Ĩ
corresponding to h ∈ I , he can choose between “following” (F)

into h and “terminating” (T), which ends the game with utility

ũ2(˜hT) := ṽ(I)πσ
−2
(S)/πσ

−2
(I). From any h ∈ Ŝ onward, the game

is identical to G(S), except that the utilities are multiplied by a

constant: ũi (z) := ui (z)π
σ
−2
(S). To turn this into a well-defined

game, a root chance node is added and connected to each h ∈ Ŝ ,
with transition probabilities πσ

−2
(h)/πσ

−2
(S).

This game is called the resolving gadget game G̃ (S,σ , ṽ), or

simply G̃ (S) when there is no risk of confusion, and the vari-

ables related to it are denoted by tilde. If ρ̃ ∈ Σ̃ is a “resolved”

strategy in G̃(S), we denote the new combined strategy in G as

σnew
:= σ |G(S)←ρ̃ , i.e. play according to strategy ρ̃ in the subgame

G(S) and according to σ everywhere else.

The difference between G̃ (S,σ , ṽ) and the original version of [7]

is that ourmodification only duplicates the upper frontier Ŝ and uses
normalization constant

∑
Ŝ π

σ
−2
(h) (rather than

∑
S π

σ
−2
(h)) and esti-

mates ṽ(I) =
∑
Î ṽ(h) (rather than

∑
I ṽ(h)). This enables G̃ (S,σ , ṽ)

to handle domains with thick information sets and public states.

While tedious, it is straightforward to check that G̃ (S,σ , ṽ) has all
the properties proved in [6, 7, 22]. Without our modification, the

resolving games would either sometimes be ill-defined, or wouldn’t

have the desired properties.

Input : Information set I ∈ I1
Output :An action a ∈ A(I)

1 S← the public state which contains I ;

2 if S < KPS then
3 G̃(S) ← BuildResolvingGame(S,D(S));
4 KPS← KPS ∪ S;
5 NPS← all S ′ ∈ S where CR acts for the first time after

leaving KPS;
6 ρ̃, ˜D← Resolve(G̃(S),NPS);
7 σ1 |S ′ ← ρ̃ |S ′ ;

8 D← calculate data for NPS based on D, σ1 and D̃;
9 end

10 return a ∼ σ1(I)
Algorithm 1: Function Play of Continual Resolving

The following properties are helpful to get an intuitive under-

standing of gadget games. Their more general versions and proofs

(resp. references for proofs) are listed in the appendix.

Lemma 3.4 (Gadget game preserves opponent’s values). For
each I ∈ I

aug

2
with I ⊂ G(S), we have vσ

new

2
(I) = ṽ

ρ̃
2
(I).

Note that the conclusion does not hold for counterfactual values

of the (resolving) player 1! (This can be easily verified on a simple

specific example such as Matching Pennies.)

Lemma 3.5 (Optimal resolving). If σ and ρ̃ are both Nash equi-
libria and ṽ(I) = vσ

2
(I) for each I ∈ Ŝ(2), then σnew

1
is not exploitable.

3.4 Continual Resolving
Domain-independent continual resolving closely follows the struc-

ture of continual resolving for poker [22], but uses a generalized

resolving gadget and handles situations which do not arise in poker,

such as multiple moves in one public state. We explain it from the

perspective of Player 1. The abstract CR keeps track of strategy σ1

it has computed in previous moves. Whenever it gets to a public

state S , where σ1 has not been computed, it resolves the subgame

G(S). As a by-product of this resolving, it estimates opponent’s

counterfactual values v
σ1,CBR(σ1)

2
for all public states that might

come next, allowing it to keep resolving as the game progresses.

CR repetitively calls a Play function which takes the current

information set I ∈ I1 as the input and returns an action a ∈ A(I)
for Player 1 to play. It maintains the following variables:

• S ∈ S . . . the current public state,

• KPS ⊂ S . . . the public states where strategy is known,

• σ1 . . . a strategy defined for every I ∈ I1 in KPS,

• NPS ⊂ S . . . the public states where CR may resolve next,

• D(S ′) for S ′ ∈ NPS . . . data allowing resolving at S ′, such as

the estimates of opponent’s counterfactual values.

The pseudo-code for CR is described inAlgorithm 1. If the current

public state belongs to KPS, then the strategy σ1(I) is defined, and
we sample action a from it. Otherwise, we should have the data

necessary to build some resolving game G̃(S) (line 3). We then

determine the public states NPS where we might need to resolve

next (line 5). We solve G̃(S) via some resolving method which also

computes the data necessary to resolve from any S ′ ∈ NPS (line

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

227

6). Finally, we save the resolved strategy in S and update the data

needed for resolving (line 7-9). To initialize the variables before the

first resolving, we set KPS and σ1 to ∅, find appropriate NPS, and

start solving the game from the root using the same solver as Play,
i.e. _ ,D ← Resolve(G,NPS).

We now consider CR variants that use the gadget game from Sec-

tion 3.3 and data of the form D = (r1, ṽ), where r1(S
′) = (πσ1

1
(h))S ′

is CR’s range and ṽ(S ′) = (ṽ(J))J estimates opponent’s counterfac-

tual value at each J ∈ S ′(2). We shall use the following notation:

Sn is the n-th public state from which CR resolves; ρ̃n is the corre-

sponding strategy in G̃(Sn); σ
n
1
is CR’s strategy after n-th resolving,

defined on KPSn ; the optimal extension of σn
1
is

σ ∗n
1

:= argminν1∈Σ1

expl
1

(
σn

1
|KPSn ∪ ν1 |S\KPSn

)
.

Lemmata 24 and 25 of [22] (summarized into Lemma A.5 in our

Appendix A) give the following generalization of [22, Theorem S1]:

Theorem 3.6 (Continual resolving bound). Suppose that CR
uses D = (r1, ṽ) and G̃(S,σ1, ṽ). Then the exploitability of its strat-
egy is bounded by expl

1
(σ1) ≤ ϵṽ

0
+ ϵR

1
+ ϵṽ

1
+ · · · + ϵṽN−1

+ ϵRN ,
where N is the number of resolving steps and ϵRn := ẽxpl

1
(ρ̃n), ϵṽn :=∑

J ∈Ŝn+1(2)

���ṽ(J) −vσ ∗n1
,CBR

2
(J)

��� are the exploitability (in G̃(Sn)) and
value estimation error made by the n-th resolver (resp. initialization
for n = 0).

The DeepStack algorithm from [22] is a poker-specific instance

of the CR variant described in the above paragraph. Its resolver is

a modification of CFR with neural network heuristics and sparse

look-ahead trees. We make CR domain-independent and allowing

for different resolving games (BuildResolvingGame), algorithms

(Resolve), and schemes (by changing line 5).

4 MONTE CARLO CONTINUAL RESOLVING
Monte Carlo Continual Resolving is a specific instance of CR which

uses Outcome Sampling MCCFR for game (re)solving. Its data are

of the form D = (r1, ṽ) described above and it resolves using the

gadget game from Section 3.3. We first present an abstract version

of the algorithms that we formally analyze, and then add improve-

ments that make it practical. To simplify the theoretical analysis,

we assume MCCFR computes the exact counterfactual value of

resulting average strategy σ̄T for further resolving. (We later dis-

cuss more realistic alternatives.) The following theorem shows that

MCCR’s exploitability converges to 0 at the rate of O(T−1/2).

Theorem 4.1 (MCCR bound). With probability at least (1−p)N+1,
the exploitability of strategy σ computed by MCCR satisfies

expli (σ) ≤
(√

2/
√
p + 1

)
|Ii |

∆u,i
√
Ai

δ

(
2

√
T0

+
2N − 1

√
TR

)
,

where T0 and TR are the numbers of MCCR’s iterations in pre-play
and each resolving, N is the required number of resolvings, δ =
minz,t qt (z) where qt (z) is the probability of sampling z ∈ Z at
iteration t , ∆u,i = maxz,z′ |ui (z) −ui (z

′)| andAi = maxI ∈Ii |A(I)|.

The proof is presented in the appendix. Essentially, it inductively

combines the OS bound (Lemma A.1) with the guarantees available

for resolving games in order to compute the overall exploitability

bound.
1
For specific domains, a much tighter bound can be obtained

by going through our proof in more detail and noting that the size of

subgames decreases exponentially as the game progresses (whereas

the proof assumes that it remains constant). In effect, this would

replace the N in the bound above by a small constant.

4.1 Practical Modifications
Above, we describe an abstract version of MCCR optimized for

clarity and ease of subsequent theoretical analysis. We now describe

the version of MCCR that we implemented in practice. The code

used for the experiments is available online at https://github.com/

aicenter/gtlibrary-java/tree/mccr.

4.1.1 Incremental Tree-Building. A massive reduction in the

memory requirements can be achieved by building the game tree

incrementally, similarly to Monte Carlo Tree Search (MCTS) [5]. We

start with a tree that only contains the root. When an information

set is reached that is not in memory, it is added to it and a playout

policy (e.g., uniformly random) is used for the remainder of the

sample. In playout, information sets are not added to memory. Only

the regrets in information sets stored in the memory are updated.

4.1.2 Counterfactual Value Estimation. Since the computation

of the exact counterfactual values of the average strategy needed

by G̃(S,σ , ·) requires the traversal of the whole game tree, we have

to work with their estimates instead. To this end, our MCCFR

additionally computes the opponent’s sampled counterfactual values

ṽσ
t

2
(I) :=

1

πσ
t,ϵ
(z)

πσ
t

−2
(h)πσ

t
(z |h)u2(z).

It is not possible to compute the exact counterfactual value of the

average strategy just from the values of the current strategies. Once

the T iterations are complete, the standard way of estimating the

counterfactual values of σ̄T is using arithmetic averages

ṽ(I) :=
1

T

∑
ṽσ

t

2
(I). (5)

However, we have observed better results with weighted averages

ṽ(h) :=
∑
t

π̃σ
t
(h)vσ

t

2
(h) /

∑
t

π̃σ
t
(h). (6)

The stability and accuracy of these estimates is experimentally

evaluated in Section 5 and further analyzed in Appendix B. We also

propose an unbiased estimate of the exact values computed from

the already executed samples, but its variance makes it impractical.

4.1.3 Root Distribution of Gadgets. As in [22], we use the infor-

mation about opponent’s strategy from previous resolving when

constructing the gadget game. Rather than being proportional to

π−2(h), the root probabilities are proportional to π−2(h)(π2(h) + ϵ).
This modification is sound as long as ϵ > 0.

1
Note that Theorem 4.1 isn’t a straightforward corollary of Theorem 3.6, since calcu-

lating the numbers ϵ ṽn does require non-trivial work. In particular, σ̄T from the n-th
resolving isn’t the same as σn∗

1
, CBR(σn∗

1
) and the simplifying assumption about ṽ

is not equivalent to assuming that ϵ ṽn = 0.

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

228

https://github.com/aicenter/gtlibrary-java/tree/mccr
https://github.com/aicenter/gtlibrary-java/tree/mccr

4.1.4 Custom Sampling Scheme. To improve the efficiency of

resolving by MCCFR, we use a custom sampling scheme which

differs from OS in two aspects. First, we modify the above sampling

scheme such that with probability 90% we sample a history that

belongs to the current information set I . This allows us to focus

on the most relevant part of the game. Second, whenever
˜h ∈

S̃ is visited by MCCFR, we sample both actions (T and F). This

increases the transparency of the algorithm, since all iterations

now “do a similar amount of work” (rather than some terminating

immediately). These modifications are theoretically sound, since

the resulting sampling scheme still satisfies the assumptions of the

general MCCFR bound from [17].

4.1.5 Keeping the Data between Successive Resolvings. Both in

pre-play and subsequent resolvings, MCCFR operates on succes-

sively smaller and smaller subsets of the game tree. In particular, we

don’t need to start each resolving from scratch, but we can re-use

the previous computations. To do this, we initialize each resolv-

ing MCCFR with the MCCFR variables (regrets, average strategy

and the corresponding value estimates) from the previous resolv-

ing (resp. pre-play). In practice this is accomplished by simply

not resetting the data from the previous MCCFR. While not being

backed up by theory, this approach worked better in most practical

scenarios, and we believe it can be made correct with the use of

warm-starting [2] of the resolving gadget.

5 EXPERIMENTAL EVALUATION
After brief introduction of competing methods and explaining the

used methodology, we focus on evaluating the alternative methods

to estimate the counterfactual values required for resolving during

MCCFR. Next, we evaluate how quickly and reliably these values

can be estimated in different domains, since these values are crucial

for good performance of MCCR. Finally, we compare exploitability

and head-to-head performance to competing methods.

5.1 Competing Methods
Information-Set Monte Carlo Tree Search. IS-MCTS [19] runs

MCTS samples as in a perfect information game, but computes

statistics for the whole information set and not individual states.

When initiated from a non-empty match history, it starts samples

uniformly from the states in the current information set. We use

two selection functions: Upper Confidence bound applied to Trees

(UCT) [16] and Regret Matching (RM) [13].We use the same settings

as in [20]: UCT constant 2x the maximal game outcome, and RM

with exploration 0.2. In the following, we refer to IS-MCTS with

the corresponding selection function by only UCT or RM.
Online Outcome Sampling. OOS [20] is an online search variant

of MCCFR. MCCFR samples from the root of the tree and needs to

pre-build the whole game tree. OOS has two primary distinctions

from MCCFR: it builds its search tree incrementally and it can bias

samples with some probability to any specific parts of the game

tree. This is used to target the information sets (OOS-IST) or the

public states (OOS-PST) where the players act during a match.

We do not run OOS-PST on domain of IIGS, due to non-trivial

biasing of sampling towards current public state.

We further compare to MCCFR with incremental tree building

and the random player denoted RND.

5.2 Computing Exploitability
Since the online game playing algorithms do not compute the strat-

egy for the whole game, evaluating exploitability of the strategies

they play is more complicated. One approach, called brute-force

in [20], suggest ensuring that the online algorithm is executed in

each information set in the game and combining the computed

strategies. If the thinking time of the algorithm per move is t , it

requiresO(tÛ|I|) time to compute one combined strategy and multi-

ple runs are required to achieve statistical significance for random-

ized algorithms. While this is prohibitively expensive even for the

smaller games used in our evaluation, computing the strategy for

each public state, instead of each information set is already feasible.

We use this approach, however, it means we have to disable the

additional targeting of the current information set in the resolving

gadget proposed in Section 4.1.4.

There are two options how to deal with the variance in the

combined strategies in different runs of the algorithm in order

to compute the exploitability of the real strategy realized by the

algorithm. The pessimistic option is to compute the exploitability of

each combined strategy and average the results. This assumes the

opponent knows the random numbers used by the algorithm for

sampling in each resolving. A more realistic option is to average the

combined strategies from different runs into an expected strategy ¯̄σ
and compute its exploitability. We use the latter.

5.3 Domains
For direct comparison with prior work, we use same domains

as in [20] with parametrizations noted in parentheses: Imperfect In-

formationGoofspiel IIGS(N), Liar’s Dice LD(D1,D2,F) andGeneric
Poker GP(T,C,R,B). We add Phantom Tic-Tac-Toe PTTT to also

have a domain with thick public states, and use Biased Rock Paper

Scissors B-RPS for small experiments. The detailed rules are in Ap-

pendix C with the sizes of the domains in Table 2. We use small

and large variants of the domains based on their parametrization.

Note that large variants are about 10
4
up to 10

15
times larger than

the smaller ones.

5.4 Results
5.4.1 Averaging of Sampled CFVs. Asmentioned in Section 4.1.2,

computing the exact counterfactual values of the average strategy

σ̄T is often prohibitive, and we replace it by using the arithmetic

or weighted averages instead. To compare the two approaches,

we run MCCFR on the B-RPS domain (which only has a single

NE σ∗ to which σ̄T converges) and measure the distance ∆v(t)
between the estimates and the correct action-values vσ ∗

1
(root,a).

In Figure 2 (left), the weighted averages converge to the correct

values with increasing number of samples, while the arithmetic

averages eventually start diverging. The weighted averages are

more accurate (see Appendix, Figure 4 for comparison on each

domain) and we will use them exclusively in following experiments.

5.4.2 Stability of CFVs. To find a nearly optimal strategy when

resolving, MCCR first needs CFVs of such a strategy (Lemma A.5).

However, the MCCFR resolver typically won’t have enough time to

find such σ̄T . If MCCR is to work, the CFVs computed by MCCFR

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

229

101 102 103 104 105 106 107 108 109

Number of samples

10−7

10−5

10−3

10−1

∆
v
(t

)

Rock

Paper

Scissors

100 101 102 103

10−1

100

ex
p

l 2
(¯̄ σ

)

IIGS-5

100 101 102 103

Time [ms]

LD-116

100 101 102 103

GP-3322

MCCR (reset)

MCCR (keep)

OOS (PST)

MCCFR

RND

Figure 2: Left – Estimation error of the arithmetic (dashed lines) and weighted averages (solid lines) of action values in B-RPS.
Right – Exploitability of ¯̄σ as a function of the resolving time. All algorithms have pre-play of 300ms.

10−3

10−2

10−1

100

e
x
p
l(
σ̄
t
)

101 102 103 104 105 106

Number of samples

0.00

0.05

0.10

0.15

0.20

A
ve

ra
g

es
o

f
C

F
V

s
d

iff
er

en
ce

s

B-RPS

IIGS-5

LD-116

GP-3322

PTTT

IIGS-13

LD-226

GP-4644

Figure 3: A comparison of exploitability (top) with “CFV in-
stability” (bottom) in different domains. For t = 10

7, the dif-
ferences are 0 by definition.

need to be close to those of an approximate equilibrium CFVs even

though they correspond to an exploitable strategy.

We run MCCFR in the root and focus on CFVs in the public

states where player 1 acts for the 2nd time (the gadget isn’t needed

for the first action, and thus neither are CFVs):

Ω := {J ∈ I
aug

2
| ∃S ′ ∈ S,h ∈ S ′ : J ⊂ S ′& pl. 1 played once in h}.

Since there are multiple equilibria MCCFR might converge to, we

cannot measure the convergence exactly. Instead, we measure the

“instability” of CFV estimates by saving ṽt
2
(J) for t ≤ T , tracking

how ∆t (J) := |ṽt
2
(J) − ṽT

2
(J)| changes over time, and aggregating

it into
1

|Ω |

∑
J ∆t (J). We repeat this experiment with 100 different

MCCFR seeds and measure the expectation of the aggregates and,

for the small domains, the expected exploitability of σ̄ t . If the
resulting “instability” is close to zero after 10

5
samples (our typical

time budget), we consider CFVs to be sufficiently stable.

Figure 3 confirms that in small domains (LD, GP), CFVs stabilize

long before the exploitability of the strategy gets low. The error

still decreases in larger games (GS, PTTT), but at a slow rate.

5.4.3 Comparison of Exploitability with Other Algorithms. We

compare the exploitability of MCCR to OOS-PST and MCCFR, and

include random player for reference. We do not include OOS-IST,

whose exploitability is comparable to that of OOS-PST [20]. For an

evaluation of IS-MCTS’s exploitability (which is very high, with

the exception of poker) we refer the reader to [19, 20].

Figure 2 (right) confirms that for all algorithms, the exploitability

decreases with the increased time per move. MCCR is better than

MCCFR on LD and worse on IIGS. The keep variant of MCCR is

initially less exploitable than the reset variant, but improves slower.

This suggests the keep variant could be improved.

5.4.4 Influence of the Exploration Rate. One of MCCR’s parame-

ters is the exploration rate ϵ of itsMCCFR resolver.Whenmeasuring

the exploitability of MCCR we observed no noteworthy influence

of ϵ (for ϵ = 0.2, 0.4, 0.6, 0.8, across all of the evaluated domains).

5.4.5 Head-to-head Performance. For each pair of algorithms,

thousands of matches have been played on each domain, alternating

positions of player 1 and 2. In the smaller (larger) domains, play-

ers have 0.3s (5s) of pre-play computation and 0.1s (1s) per move.

Table 1 summarizes the results as percentages of the maximum

domain payoff.

Note that the results of the matches are not necessarily transitive,

since they are not representative of the algorithms’ exploitability.

When computationally tractable, the previous experiment 5.4.3 is

therefore a much better comparison of an algorithm’s performance.

Both variants of MCCR significantly outperform the random

opponent in all games. With the exception of PTTT, they are also at

least as good as the MCCFR “baseline”. This is because public states

in PTTT represent the number of moves made, which results in a

non-branching public tree and resolving games occupy the entire

level as in the original game. MCCR is better than OOS-PST in LD

and GP, and better than OOS-IST in large IIGS. MCCR is worse than

IS-MCTS on all games with the exception of small LD. However,

this does not necessarily mean that MCCR’s exploitability is higher

than for IS-MCTS in the larger domains, MCCR only fails to find

the strategy that would exploit IS-MCTS.

6 CONCLUSION
We propose a generalization of Continual Resolving from poker [22]

to other extensive-form games. We show that the structure of the

public tree may be more complex in general, and propose an ex-

tended version of the resolving gadget necessary to handle this

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

230

IIGS-5 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) 0.4 ± 1.2 0.6 ± 1.3 – -2.6 ± 1.3 -2.8 ± 1.3 -6.5 ± 1.2 51.2 ± 1.2

MCCR (reset) -0.8 ± 1.2 – -2.5 ± 1.2 -5.5 ± 1.2 -8.1 ± 1.2 49.1 ± 1.2

MCCFR – -1.3 ± 1.3 -2.7 ± 1.3 -5.6 ± 1.2 48.5 ± 1.2

OOS-PST – – – –

OOS-IST -2.0 ± 1.3 -5.2 ± 1.2 54.5 ± 1.1

RM -16.6 ± 1.2 67.8 ± 1.0

UCT 70.0 ± 1.0

IIGS-13 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) -18.8 ± 5.6 12.8 ± 5.7 – -7.3 ± 5.7 -56.4 ± 4.7 -69.1 ± 4.1 43.9 ± 5.1

MCCR (reset) 24.4 ± 5.5 – 4.9 ± 2.6 -35.6 ± 5.3 -56.0 ± 4.7 55.6 ± 4.7

MCCFR – -22.8 ± 5.6 -59.9 ± 4.6 -75.1 ± 3.7 37.8 ± 5.3

OOS-PST – – – –

OOS-IST -44.4 ± 5.1 -61.2 ± 4.5 58.2 ± 4.6

RM -22.8 ± 5.6 82.3 ± 3.2

UCT 91.2 ± 2.3

LD-116 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) -1.4 ± 2.0 9.7 ± 2.0 5.2 ± 2.0 -4.1 ± 2.0 2.6 ± 1.0 5.6 ± 2.0 60.9 ± 1.6

MCCR (reset) 11.6 ± 2.0 10.1 ± 2.0 -3.9 ± 2.0 -5.5 ± 2.0 5.3 ± 2.0 60.5 ± 1.6

MCCFR -6.8 ± 2.0 -8.7 ± 2.0 -4.7 ± 2.0 1.9 ± 1.0 54.0 ± 1.7

OOS-PST -4.3 ± 2.0 -3.0 ± 2.0 6.5 ± 2.0 60.3 ± 1.6

OOS-IST -1.7 ± 1.0 5.2 ± 2.0 64.8 ± 1.6

RM 5.2 ± 2.0 66.1 ± 1.5

UCT 65.4 ± 1.5

LD-226 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) 6.2 ± 5.4 45.3 ± 5.7 46.1 ± 5.7 -22.7 ± 5.9 -33.6 ± 5.7 -33.4 ± 5.7 76.2 ± 4.2

MCCR (reset) 37.8 ± 5.4 44.2 ± 5.7 -31.2 ± 5.7 -39.8 ± 5.4 -44.8 ± 5.2 81.6 ± 4.5

MCCFR -5.4 ± 4.6 -55.7 ± 4.5 -49.3 ± 4.6 -47.8 ± 5.1 45.8 ± 5.2

OOS-PST -53.6 ± 5.3 -51.5 ± 4.9 -46.4 ± 5.1 49.6 ± 4.1

OOS-IST -12.0 ± 5.6 -22.5 ± 5.6 83.8 ± 3.8

RM -11.6 ± 5.7 79.7 ± 3.5

UCT 75.4 ± 3.8

GP-3322 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) 0.2 ± 0.4 2.2 ± 0.5 1.7 ± 0.5 0.4 ± 0.2 -0.5 ± 0.4 -1.5 ± 0.4 5.9 ± 0.5

MCCR (reset) 0.7 ± 0.4 0.4 ± 0.2 -0.3 ± 0.2 -0.5 ± 0.4 -1.0 ± 0.3 5.5 ± 0.4

MCCFR -1.9 ± 0.6 -2.7 ± 0.6 -3.6 ± 0.5 -3.3 ± 0.5 6.0 ± 0.6

OOS-PST -1.0 ± 0.9 -2.1 ± 0.5 -2.8 ± 0.4 7.4 ± 0.6

OOS-IST -1.3 ± 0.5 -2.1 ± 0.4 7.4 ± 0.6

RM -1.2 ± 0.4 7.8 ± 0.5

UCT 6.3 ± 0.4

GP-4644 MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) 1.6 ± 1.2 7.3 ± 2.6 14.2 ± 2.5 -3.4 ± 2.3 -4.1 ± 1.8 -6.9 ± 1.5 19.3 ± 2.6

MCCR (reset) 9.5 ± 2.0 11.9 ± 2.0 -3.5 ± 1.8 -3.0 ± 1.5 -2.5 ± 1.3 15.8 ± 2.2

MCCFR -8.7 ± 3.1 -13.3 ± 2.9 -9.6 ± 2.3 -6.8 ± 1.9 12.0 ± 3.0

OOS-PST -8.1 ± 3.0 -8.9 ± 2.4 -5.0 ± 2.0 11.8 ± 3.1

OOS-IST -2.1 ± 1.8 -1.6 ± 1.2 20.4 ± 2.9

RM -0.3 ± 1.1 20.5 ± 2.3

UCT 17.6 ± 2.0

PTTT MCCR (reset) MCCFR OOS-PST OOS-IST RM UCT RND

MCCR (keep) 17.7 ± 3.8 -1.1 ± 0.9 -1.8 ± 1.6 -5.0 ± 3.7 -6.9 ± 3.7 -6.2 ± 3.7 25.5 ± 3.8

MCCR (reset) -6.2 ± 3.8 -9.8 ± 3.7 -14.6 ± 3.6 -20.9 ± 3.6 -14.3 ± 3.7 21.6 ± 3.7

MCCFR 0.1 ± 3.7 -2.1 ± 1.5 -5.2 ± 3.7 -4.0 ± 3.6 27.9 ± 3.7

OOS-PST -5.6 ± 3.7 -5.7 ± 3.7 -5.2 ± 3.7 29.4 ± 3.7

OOS-IST -3.5 ± 3.2 -3.9 ± 3.6 35.1 ± 3.6

RM 5.6 ± 3.6 51.3 ± 3.3

UCT 52.6 ± 3.3

Table 1: Head-to-head performance. Positive numbers mean that the row algorithm is winning against the column algorithm
by the given percentage of themaximumpayoff in the domain. Gray numbers indicate thewinner isn’t statistically significant.

complexity. Furthermore, both players may play in the same pub-

lic state (possibly multiple times), and we extend the definition of

Continual Resolving to allow this case as well. We present a com-

pletely domain-independent version of the algorithm that can be

applied to any EFG, is sufficiently robust to use variable resolving

schemes, and can be coupled with different resolving games and

algorithms (including classical CFR, depth-limited search utilizing

neural networks, or other domain-specific heuristics). We show that

the existing theory naturally translates to this generalized case.

We further introduce Monte Carlo CR as a specific instance of

this abstract algorithm that uses MCCFR as a resolver. It allows

deploying continual resolving on any domain, without the need

for expensive construction of evaluation functions. MCCR is the-

oretically sound as demonstrated by Theorem 4.1, constitutes an

improvement over MCCFR in the online setting in terms head-

to-head performance, and doesn’t have the restrictive memory

requirements of OOS. The experimental evaluation shows that

MCCR is very sensitive to the quality of its counterfactual value

estimates. With good estimates, its worst-case performance (i.e.

exploitability) improves faster than that of OOS. In head-to-head

matches MCCR plays similarly to OOS, but it only outperforms

IS-MCTS in one of the smaller tested domains. Note however that

the lack of theoretical guarantees of IS-MCTS often translates into

severe exploitability in practice [20], and this cannot be alleviated

by increasing IS-MCTS’s computational resources [19]. In domains

where MCCR’s counterfactual value estimates are less precise, its

exploitability still converges to zero, but at a slower rate than OOS,

and its head-to-head performance is noticeably weaker than that

of both OOS and IS-MCTS.

In the future work, the quality of MCCR’s estimates might be

improved by variance reduction [26], exploring ways of improv-

ing these estimates over the course of the game, or by finding an

alternative source from which they can be obtained. We also plan

to test the hypothesis that there are classes of games where MCCR

performs much better than the competing algorithms (in particu-

lar, we suspect this might be true for small variants of turn-based

computer games such as Heroes of Might & Magic or Civilization).

ACKNOWLEDGMENTS
Access to computing and storage facilities owned by parties and

projects contributing to the National Grid Infrastructure MetaCen-

trum provided under the program "Projects of Large Research, De-

velopment, and Innovations Infrastructures" (CESNET LM2015042),

is greatly appreciated. This work was supported by Czech science

foundation grant no. 18-27483Y.

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

231

REFERENCES
[1] David Blackwell and others. 1956. An analog of the minimax theorem for vector

payoffs. Pacific J. Math. 6, 1 (1956), 1–8.
[2] Noam Brown and Tuomas Sandholm. 2016. Strategy-Based Warm Starting for

Regret Minimization in Games.. In AAAI. 432–438.
[3] Noam Brown and Tuomas Sandholm. 2017. Safe and nested subgame solving

for imperfect-information games. In Advances in Neural Information Processing
Systems. 689–699.

[4] Noam Brown, Tuomas Sandholm, and Brandon Amos. 2018. Depth-Limited

Solving for Imperfect-Information Games. arXiv preprint arXiv:1805.08195 (2018).
[5] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I

Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-

rakis, and Simon Colton. 2012. A survey of Monte Carlo tree search methods.

IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.
[6] Neil Burch. 2017. Time and Space: Why Imperfect Information Games are Hard.

Ph.D. Dissertation. University of Alberta.

[7] Neil Burch, Michael Johanson, and Michael Bowling. 2014. Solving Imperfect

Information Games Using Decomposition.. In AAAI. 602–608.
[8] Paolo Ciancarini and Gian Piero Favini. 2010. Monte Carlo tree search in

Kriegspiel. Artificial Intelligence 174 (July 2010), 670–684. Issue 11.

[9] Peter I Cowling, Edward J Powley, and Daniel Whitehouse. 2012. Information

set monte carlo tree search. IEEE Transactions on Computational Intelligence and
AI in Games 4, 2 (2012), 120–143.

[10] Joseph Y Halpern. 1997. On ambiguities in the interpretation of game trees.

Games and Economic Behavior 20, 1 (1997), 66–96.
[11] Joseph Y Halpern and Rafael Pass. 2016. Sequential Equilibrium in Games of

Imperfect Recall.. In KR. 278–287.
[12] Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading

to correlated equilibrium. Econometrica 68, 5 (2000), 1127–1150.
[13] Sergiu Hart and Andreu Mas-Colell. 2001. A reinforcement procedure leading to

correlated equilibrium. In Economics Essays. Springer, 181–200.
[14] Feng-Hsiung Hsu. 2006. Behind Deep Blue: Building the Computer that Defeated

the World Chess Championship. Princeton University Press.

[15] Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. 2011.

Accelerating best response calculation in large extensive games. In IJCAI, Vol. 11.
258–265.

[16] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.

In European conference on machine learning. Springer, 282–293.
[17] Marc Lanctot. 2013. Monte Carlo sampling and regret minimization for equilibrium

computation and decision-making in large extensive form games. Ph.D. Dissertation.
University of Alberta.

[18] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. 2009.

Monte Carlo sampling for regret minimization in extensive games. In Advances
in neural information processing systems. 1078–1086.

[19] Viliam Lisy. 2014. Alternative selection functions for Information Set Monte

Carlo tree search. Acta Polytechnica 54, 5 (2014), 333–340.
[20] Viliam Lisý, Marc Lanctot, and Michael Bowling. 2015. Online monte carlo

counterfactual regret minimization for search in imperfect information games. In

Proceedings of the 2015 International Conference on Autonomous Agents and Multi-
agent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 27–36.

[21] Jeffrey Long, Nathan R Sturtevant, Michael Buro, and Timothy Furtak. 2010.

Understanding the success of perfect information monte carlo sampling in game

tree search. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press, 134–140.

[22] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan

Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. 2017.

Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science
356, 6337 (2017), 508–513.

[23] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen J

Gaukrodger. 2016. Refining Subgames in Large Imperfect Information Games..

In AAAI. 572–578.
[24] Martin J Osborne and Ariel Rubinstein. 1994. A course in game theory. MIT press.

[25] Eric Raboin, Dana Nau, Ugur Kuter, Satyandra K Gupta, and Petr Svec. 2010.

Strategy generation in multi-agent imperfect-information pursuit games. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1. International Foundation for Autonomous Agents

and Multiagent Systems, 947–954.

[26] Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and

Michael Bowling. 2018. Variance Reduction inMonte Carlo Counterfactual Regret

Minimization (VR-MCCFR) for Extensive Form Games using Baselines. arXiv
preprint arXiv:1809.03057 (2018).

[27] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, and others. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484–489.
[28] Fabien Teytaud and Olivier Teytaud. 2011. Lemmas on partial observation, with

application to phantom games. In Computational Intelligence and Games (CIG),
2011 IEEE Conference on. IEEE, 243–249.

[29] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.

2008. Regret minimization in games with incomplete information. In Advances
in neural information processing systems. 1729–1736.

Session 1E: Economic Paradigm: Learning and Adaptation AAMAS 2019, May 13-17, 2019, Montréal, Canada

232

	Abstract
	1 Introduction
	2 Background
	2.1 Imperfect Information Games
	2.2 Nash Equilibria and Counterfactual Values
	2.3 Monte Carlo CFR

	3 Domain-Independent Formulation of Continual Resolving
	3.1 Subgames and the Public Tree
	3.2 Aggregation and the Upper Frontier
	3.3 Resolving Gadget Game
	3.4 Continual Resolving

	4 Monte Carlo Continual Resolving
	4.1 Practical Modifications

	5 Experimental evaluation
	5.1 Competing Methods
	5.2 Computing Exploitability
	5.3 Domains
	5.4 Results

	6 Conclusion
	References
	A The Proof of Theorem 4.1
	A.1 Monte Carlo CFR
	A.2 Gadget Game Properties
	A.3 Resolving
	A.4 Monte Carlo Continual Resolving

	B Computing Counterfactual Values Online
	B.1 The Counterexample
	B.2 An Alternative Formula for the Utility of the average strategy
	B.3 Computing Cumulative Reach Probabilities

	C Game Rules
	D Extended results

