
X*: Anytime Multiagent Path Planning With Bounded Search
Extended Abstract

Kyle Vedder
College of Information and Computer Sciences

Amherst, Massachusetts
kvedder@umass.edu

Joydeep Biswas
College of Information and Computer Sciences

Amherst, Massachusetts
joydeepb@cs.umass.edu

ABSTRACT
Multi-agent planning in dynamic domains is a challenging problem:
the size of the configuration space increases exponentially in the
number of agents, and plans need to be re-evaluated periodically to
account for moving obstacles. However, we have two key insights
that hold in several domains: 1) conflicts between multi-agent plans
often have geometrically local resolutions within a small repair
window, even if such local resolutions are not globally optimal;
and 2) the partial search tree for such local resolutions can then be
iteratively improved over successively larger windows to eventually
compute the global optimal plan. Building upon these two insights,
we introduce 1) a class of anytime multiagent planning solvers, 2)
a naïve solver in this class, and 3) an efficient solver in this class
which reuses prior search information when improving a solution.

KEYWORDS
multiagent planning; anytime planning; bounded search; search
reuse; anytime multiagent planning

ACM Reference Format:
Kyle Vedder and Joydeep Biswas. 2019. X*: Anytime Multiagent Path Plan-
ning With Bounded Search. In Proc. of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION AND RELATEDWORK
Quickly constructing collision-free paths from a start to a goal is
a problem faced by almost all robotic systems in dynamic envi-
ronments. Adding more agents makes this problem exponentially
harder [3], causing this problem, known as the Multiagent Plan-
ning Problem (MPP), to be pressing for many multiagent systems.
Various planners exist to solve the MPP[1, 2, 4, 5, 7, 9]; however,
in this work we are interested in planners which produce optimal
solutions, in particular M* and CBS.

M* [8] is a state-of-the-art MPP solver that computes an optimal
policy for each agent in individual space, constructs a path in joint
space from the individual policies, and then uses the individual
policies to inform local repairs to the joint space path when inter-
actions are detected. In sparse domains, the dimensionality of these
repairs are low, allowing M* to quickly solve the MPP.

This work is supported in part by AFRL and DARPA under agreement #FA8750-16-2-
0042, and NSF grant IIS-1724101.
Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

w1

w2

w1

w2

Stage 1Initial Configuration

w1

w2

Stage 2

w1

w2

Stage 3

Figure 1: The three stages of X*’s grow and replan algorithm
which allow it to save computation between searches. The
red dot is the start, the green dot is the goal, the blue area
is the search tree, the smaller box is the old window, the
larger box is the new window, the purple path is the search
solution, and the orange lines are non-colliding joint space
paths. Initial Configuration to Stage 1 removes the restric-
tion of the smaller window in the search from the old start
to old smaller goal, Stage 1 to Stage 2 moves the start from
the old start to the new start, and Stage 2 to Stage 3 moves
the goal from the old goal to the new goal.

Another state-of-the-art planner, Conflict Based Search (CBS) [6]
approaches the MPP differently. CBS builds a conflict graph, mod-
eling different worlds with constraints, and replans with these
constraints in each agent’s individual space. This approach allows
for planning space to grow exponentially in the number of conflicts
rather than the number of agents. In sparse domains, the number
of these conflicts is low, allowing CBS to quickly solve the MPP.

2 CONTRIBUTIONS
In this work we present 1) SWP, a class of anytime MPP solvers, 2)
Naïve Window A* (NWA*), a naïve SWP solver, and 3) Expanding
A* (X*), an efficient SWP solver.

2.1 Simple Windowed Planner
SWP is a class of anytime MPP solvers that leverage search bound-
ing for fast, anytime plan generation. Shown in Algorithm 1, SWP
solvers operate by first planning for each agent independently, and
then identifying interacting groups of agents from these individual
plans. Next, for each interacting group, SWP solvers project the
individual plans into the joint planning space of the group, and con-
struct a joint space window, an artificial geometric bound, around
the point of interaction. SWP solvers then proceed to repair the
collision in this window. While the time budget is not exhausted,
SWP solvers then iteratively grow the windows and replan inside
them, thereby improving the quality of the existing plan.

2.2 Naïve Window A*
NaïveWindowA* (NWA*) is a naïve SWP solver. It defines a window
to be a set of contiguous states in joint agent space. It possesses a
set of interacting agents and a start b and goal e in the joint space

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2247



Algorithm 1 Simple Windowed Planner

1: procedure SWP
2: Π ← independently planned paths for all agents
3: S ← interacting set(s) of agents in Π
4: W ← {w | w is the smallest fit window for s ∈ S}
5: ∀w ∈W , plan jointly inw , update Π
6: while more time available do
7: ∀w ∈W , groww and replan jointly, update Π

of these agents agents. In addition, for an arbitrary windoww1, it
has a successor, w2, where w1 ⊂ w2. For our experimentation, a
window is characterized by a center state, and a radius; it contains
all states with an L∞ norm less than or equal to the radius. The
successor of a window is implemented by incrementing its radius.

An initial window size is selected for all new windows, and these
windows are produced on SWP’s line 4. To form a valid solution,
NWA* runs A* inside the window in the joint space of the involved
agents, and updates a section of the individually planned solution
with the replanned segment in the window. To grow the window in
SWP’s line 7, NWA* replaces each window with its successor and
replans from scratch, again updating a section of the individually
planned solution with the replanned segment in the window.

2.3 Expanding A*
Like NWA*, Expanding A* (X*) is an SWP solver. It uses the same
window definition and initial planning strategy as NWA*; however,
for SWP’s line 7 it is able to efficiently reuse information from the
prior search in the next search, speeding up successive solution
generation. To reuse information while growing and replanning in
a window, X* employs a three stage solution, shown in Figure 1.

These three stages operate much like standard A*; they use an
open list, O , to hold the search frontier, and a closed list, C , to
hold already expanded states, with states s ∈ O expanded in the
order of minimum f -value, f (s), with this minimum state accessed
by top(O). They also have a state neighbor function, N (s), which
returns the set of collision-free neighbors of s . In addition, it also
uses the unique concept of an “out-of-window” list, X , which stores
states removed fromO and intended to be expanded, but are outside
of the current window boundary. These states are stored in X for
use in the next search. Finally, Stage 3 reasons about the path
between the successive window starts b2 and b1 along the path, π ,
and accesses the cost of this path via ∥π ∥.

Figure 1 shows the three stages of X*’s grow and replan algorithm
(SWP’s line 7). Stage1 transforms a search tree from b1 to e1 in
w1 into a search tree from b1 to e1 in w2. Stage2 transforms the
search tree from b1 to e1 inw2 into a search tree from b2 to e1 in
w2. Stage3 transforms the search tree from a from b2 to e1 inw2
into a search tree from b2 to e2 inw2.

3 RESULTS AND CONCLUSION
To demonstrate X*’s performance, we compared it against Operator
Decomposition (OD) M*1 and CBS2, using the metric of Normalized
Runtime, a 95% CI over 100 trials of algorithm runtime divided by
1M* Source Code URL: https://github.com/gswagner/mstar_public
2CBS Source Code URL: https://github.com/whoenig/libMultiRobotPlanning

Algorithm 2 X* Algorithms

1: procedure A*SearchUntil(O,C,X ,w, fmax )
2: while f (top(O)) < fmax do
3: s ← top(O) ; O ← O \ {s}
4: if ∃s ′ ∈ C : s = s ′ ∧ f (s) ≥ f (s ′) then continue
5: if s < w then X ← X ∪ {s} continue
6: C ← C ∪ {s} ; O ← O ∪ N (s)

1: procedure Stage1
2: O ← O ∪ X ; X ← ∅
3: A*SearchUntil(O,C,X ,w2, f (e1))

1: procedure Stage2
2: for all s ∈ O,C do f (s) ← f (s) + ∥π ∥

3: for all s ∈ π do C ← C ∪ {s} ; O ← O ∪ N (s)

4: A*SearchUntil(O,C,X ,w2, f (e1) + ∥π ∥)

1: procedure Stage3
2: for all s ∈ O,C do h(s) ← H (s, e2)

3: while O , ∅ do
4: s ← top(O)
5: if s = e2 then return UnwindPath(C, e2,b2)
6: O ← O \ {s}
7: if s ∈ C then continue
8: if s < w then X ← X ∪ {s} ; continue
9: C ← C ∪ {s} ; O ← O ∪ N (s)

10: return NOPATH

the runtime of an individual space A* search for each agent, in order
to normalize across implementation quality.

2 4 6 8
Agent Count

100

101

102

N
or
m
al
iz
e d

Ru
nt
im

e

CBS Solution
X* Opt. Solution
X* First Solution
M* Solution

2 4 6 8
Agent Count

1.00

1.05

1.10

1.15

1.20

Figure 2: Normalized runtime of X* and state-of-the-art on
a 5000mm × 4000mm section of a randomized RoboCup SSL
field with stationary opponents; 95% confidence intervals
over 100 trials. Left is a full plot, right is an enlarged section
of the left plot between 1 and 1.2 of Normalized Runtime.

Figure 2 shows the performance of X* both as an optimal MPP
solver and an anytime MPP solver. X* is able to very quickly gener-
ate a first solution while generating optimal solutions competitive
with the state-of-the-art, and a median optimal runtime below the
confidence intervals of M* or CBS. This experimentation suggests
that X* is a viable as an optimal MPP solver that also provides any-
time properties in domains with sparse interactions, and positions
SWP solvers as an exciting new area of MPP research.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2248

https://github.com/gswagner/mstar_public
https://github.com/whoenig/libMultiRobotPlanning


REFERENCES
[1] Liron Cohen, Matias Greco, Hang Ma, Carlos Hernández, Ariel Felner, T. K. Satish

Kumar, and Sven Koenig. 2018. Anytime Focal Search with Applications. In IJCAI.
[2] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Golden-

berg, Guni Sharon, Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek.
2017. Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem:
Summary and Challenges. In SOCS.

[3] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. 1984. On the Complexity of Motion
Planning for Multiple Independent Objects; PSPACE - Hardness of the “Ware-
houseman’s Problem”. In The International Journal of Robotics Research. 76–88.

[4] M Renee Jansen and Nathan R. Sturtevant. 2008. Direction Maps for Cooperative
Pathfinding. Proceedings of the 4th Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE 2008.

[5] Malcolm Ross Kinsella Ryan. 2008. Exploiting Subgraph Structure in Multi-Robot
Path Planning. J. Artif. Intell. Res. 31 (2008), 497–542.

[6] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40 – 66.

[7] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2011. The Increasing
Cost Tree Search for Optimal Multi-agent Pathfinding. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence - Volume
Volume One (IJCAI’11). AAAI Press, 662–667.

[8] G. Wagner. 2015. Subdimensional Expansion: A Framework for Computationally
Tractable Multirobot Path Planning. Ph.D. Dissertation. The Robotics Institute
Carnegie Mellon University.

[9] Ko-Hsin Cindy Wang and Adi Botea. 2008. Fast and Memory-efficient Multi-
agent Pathfinding. In Proceedings of the Eighteenth International Conference on
International Conference on Automated Planning and Scheduling (ICAPS’08). AAAI
Press, 380–387.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2249


	Abstract
	1 Introduction and Related Work
	2 Contributions
	2.1 Simple Windowed Planner
	2.2 Naïve Window A*
	2.3 Expanding A*

	3 Results and Conclusion
	References



