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ABSTRACT
We consider a way of generating voting rules based on a random

relation, the winners being alternatives that have the highest proba-

bility of being supported. We consider different notions of support,

such as whether an alternative dominates the other alternatives, or

whether an alternative is undominated, and we consider structural

assumptions on the form of the random relation, such as being

acyclic, asymmetric, connex or transitive. We give sufficient con-

ditions on the supporting function for the associated voting rule

to satisfy various properties such as Pareto and monotonicity. The

random generation scheme involves a parameter p between zero

and one. Further voting rules are obtained by tending p to zero, and

by tending p to one, and these limiting rules satisfy a homogeneity

property, and, in certain cases, Condorcet consistency. We define a

language of supporting functions based on eight natural properties,

and categorise the different rules that can be generated for the

limiting p cases.
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1 INTRODUCTION
We develop in this paper a framework for aggregating multi-agent

preferences, including many interesting instances (i.e., different

aggregation methods), based on a novel probabilistic model. Our

approach involves using a weighted relation v to pick a random

binary preference relation between alternatives. The numerical

support for an alternative x is the chance that the randomly picked

relation R (logically) supports x , i.e., Pr(R ∈ Spx ), where Spx is

defined to be the set of relations that support x . The output is the
set of winners, i.e., the set of alternatives with maximal numerical

support. Many different notions of logical support are possible,

leading to different definitions of Spx .

Randomly generating relation R
Let A be a finite set of alternatives. Define ∆ to be the set of pairs

(x,y) with x , y. A subset R of ∆ is thus an irreflexive binary rela-

tion onA. We defineV to be the set of all functionsv from ∆ to the
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non-negative reals. An elementv ofV will be intended to represent

some degree of preference for alternative x over alternativey. For in-
stance, in a voting scenario, it could represent the number of voters

preferring x to y. We generate a random irreflexive binary relation

R, based on parameter p ∈ (0, 1), as follows. For each (x,y) ∈ ∆

we (independently) omit (x,y) from R with chance (1 −p)v(x ,y), so

the probability that R contains (x,y) equals 1− (1−p)v(x ,y). Based
on this, the chance Prvp ({R}) that the randomly chosen relation is

equal to a particular R (⊆ ∆) is defined as follows:

Prvp ({R}) =
∏

(x ,y)∈R

(1 − (1 − p)v(x ,y)) ×
∏

(x ,y)∈∆\R

(1 − p)v(x ,y).

Example 1.1. Consider the set of alternatives A = {a,b, c,d} and
v ∈ V represented by the following table, with e.g., v(a,b) = 5; v
may, for example, arise from a profile with eight voters: two voters

with preference order a > b > c > d , and three voters with each of

a > b > d > c and c > b > d > a.

v(x,y) a b c d

a − 5 5 5

b 3 − 5 8

c 3 3 − 5

d 3 0 3 −

Let R = Ob = {(b,a), (b, c), (b,d)}. Let q = 1 − p and let r =∑
(x ,y)∈∆\Ob v(x,y) = 32. Then Prvp ({R}) equals (1 − qv(b ,a))(1 −

qv(b ,c))(1 − qv(b ,d ))qr , i.e., (1 − q3)(1 − q5)(1 − q8)q32. ✷

Defining winners, given p ∈ (0, 1)

A supporting function Sp associates a set of relations Spx (⊆ 2
∆
)

with each alternative x inA. Givenv ∈ V and a value p ∈ (0, 1), we

consider, for each alternative x , the probability Prvp (Spx ) of Spx , i.e.,∑
R∈Spx Pr

v
p ({R}). This generates a social choice rule in the obvious

way: we defineW
Sp

p (v) to be the set of alternatives x that maximise

Pr
v
p (Spx ), so that x ∈ W

Sp

p (v) if and only if for all alternatives y,

Pr
v
p (Spx ) ≥ Pr

v
p (Spy ).

Two basic supporting functions, Opt and U

We say that x is dominating in relation R if R contains the set Ox =

{(x,y) : y , x}, so that x is preferred to every other alternative

with respect to preference relation R. We say that the supporting

function Sp satisfies the property Opt if Spx only contains relations

R in which x is dominating. In this case, R supports x only if x
is dominating in relation R. We say that Sp satisfies property U if

R ∈ Spx implies x is undominated in R, i.e., R ∩ Dx = ∅, where

Dx = {(y, x) : y , x}, so no alternative dominates x .
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Example 1.1 continued: Suppose we define Spx to be Ux for x ∈ A;
with this definition, relation R supports b if and only if b is not

dominated in R, i.e., there exists no pair of the form (x,b) in R.
In other words, R ∈ Spb if and only if R ⊆ ∆ \ Db , where Db =

{(a,b), (c,b), (d,b)}. Prvp (Ub ) =
∑
R⊆∆\Db Pr

v
p ({R}), which can be

shown to be equal to

∏
ψ ∈Db

qv(ψ ) = qs where s =
∑
ψ ∈Db

v(ψ ) =

8. Similarly, Prvp (Ua ) = q
9
, Prvp (Uc ) = q

13
, and Prvp (Ud ) = q

18
. This

shows that whatever value is chosen for p ∈ (0, 1), b is the unique

winner, since it has the highest probability of being supported:

Prvp (Ub ) > Prvp (Ux ) for x , b. In fact, Proposition 1.2 below implies

that Spx = Ux generates the Borda voting rule for any value of p.
Suppose we instead define Spx to be Ux ∩ Optx for all x ∈ A.

Now Spx contains all relations R in which (i) x is undominated

and (ii) x dominates the other alternatives. It can be shown that

Prvp (Spb ) = (1 − q3)(1 − q5)(1 − q8)q8 and Prvp (Spa ) = (1 − q5)3q9.

With e.g., p = 0.5, this makes b the unique winner; in fact, b is

the unique winner unless p is very small (less than around 0.0693),

when a becomes the winner. ✷

We consider sufficient conditions for desirable properties on the

voting rule. In particular, if Sp satisfies both Opt and U then we

show that the voting rule satisfies natural monotonicity and Pareto

properties. This therefore gives a method for generating a large

family of voting (and other aggregation) rules that have some good

properties.

Further supporting functions
As well as properties Opt and U we consider a weaker form TOpt

of property Opt, (relating to whether x is dominating in the tran-

sitive closure of R) and OOpt, which means that, for R ∈ Spx , R
only contains elements of the form (x, z), i.e., R ⊆ Ox . We also

consider structural properties that restrict the form of the relation:

asymmetry, acyclicity, connex, and transitivity properties. We con-

sider a simple language L of logical support, based on these eight

properties, with a supporting function being generated by a subset

of the eight properties.

When the winners do not depend on p
The following result shows special cases in which the winner is

independent of the value p ∈ (0, 1), in particular the case when

Spx = Ux and the case when Spx = OOptx .

Proposition 1.2. Suppose that for each x ∈ A, Spx is of the form
{R : R ⊆ Sx } for some Sx ⊆ ∆. Then, Prvp (Spx ) = (1 − p)v

+(∆) ×

(1 − p)−v
+(Sx ), and x ∈W

Sp

p (v) if and only if x ∈ argmaxzv
+(Sz ).

In particular, we have x ∈W U

p (v) if and only if x ∈ argminzv
+(Dz ),

and x ∈W
OOpt

p (v) if and only if x ∈ argmaxzv
+(Oz ).

Tending p → 1 or p → 0

Away to ensure a homogeneity property (inwhich a linear rescaling

of the input v makes no difference) is to consider the result of

tending p to either 1 or 0. We show that the set of winners is still

always non-empty and that we obtain somewhat simpler structures

determining the voting rules.

We completely characterise the voting rules for the language L,

for the p → 0 case, and for the p → 1 case in which v is non-zero,

leading to seven different voting rules in each case. We show, in

particular, that the p → 1 cases lead to a number of well-known

voting rules: Borda, the Kemeny rule, Tideman’s rule, and maximin.

2 RELATEDWORK
The input v ∈ V of a V-rule can be viewed as a weighted directed

graph on alternatives, with non-negative real weights; this suggests

the potential of relationships with weighted tournament solutions,

C2 functions in the Fishburn’s classification [6, 7]. In particular,

in certain cases, there is a correspondence between the (p → 1)-

winners and the winners according to a voting rule generated by

median orders [1, 6, 8].

There are also some links between between (p → 1) cases and

voting rules generated fromMaximumLikelihood Estimators (MLE),

and consensus-based voting rules [2, 3, 5], since the maximin rule

can be generated, as well as Borda. In a general sense, our ap-

proach with limiting p is reminiscent of the construction of the

rules MLE
∞
intr , MLE

1

intr , MLE
∞
tr and MLE

1

tr in [5], and they can

give similar rules to the p → 1 rules generated with our framework.

However, even when they do, the tie-breaking can be very different

from the winners in our framework, as illustrated on pages 190 and

191 of [5], which suggests that there is not a simple correspondence

between the different frameworks.

3 DISCUSSION
We have defined and explored a framework for generating voting

rules (and V-rules that allow a general form of input), based on

winners being alternatives that maximise the probability of being

supported. We have given some simple sufficient conditions for

certain properties of the voting rule. We defined a simple language

of supporting functions, and categorised the rules generated for

the two limiting cases with p → 0/1.

Our method allows one to generate large (and continuous) fami-

lies of voting rules that satisfy some good properties. In particular,

if we choose some neutral Sp based on (arbitrarily complicated)

sets of relations and add the conditions Opt and U then we ob-

tain neutral V-rules, and thus also voting rules (using an arbitrary

strictly monotonic non-zero function of the positive reals), that

satisfy Pareto and monotonicity properties. Homogeneity of the

voting rule can be enforced by an additional normalisation step. If

we additionally consider p → 1 and restrict to asymmetric relations

then the voting rule will satisfy the Condorcet property.

For the limiting p → 1 case, it is striking that several well-

known voting rules can be generated by choosing different natural

choices of the supporting function, including Borda, maximin, the

Kemeny rule and Tideman’s rule. Therefore, as well as generating

new voting rules, the approach gives a new perspective on standard

rules, and it would be interesting to pursue a view of the framework

as a rationalisation of certain classes of voting rules [4, 5].
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