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ABSTRACT
Influence maximization is a well-investigated problem which asks
for key individuals who have significant influence in a given so-
cial network. This paper addresses this problem when the social
network structure is hidden. We adopt the framework of influence
learning from samples and build a neural network model to rep-
resent the information diffusion process. Based on the model, we
propose two new algorithmsNeuGreedy andNeuMax.NeuGreedy
simulates the traditional greedy algorithm whilst NeuMax utilizes
the weights of connections between neurons. We test the algo-
rithms on both synthetic and real-world datasets. The results verify
the effectiveness of the proposed methods as compared to existing
algorithms with or without the network structure.
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1 INTRODUCTION
Influencemaximization (IM) is a crucial problem tomany fields from
viral marketing to crowdmobilization [3, 16]. The problem asks for a
small set S of seed nodes in a given social network who would spread
messages among adjacent nodes in the hope to trigger a a cascade of
information propagation. The number of nodes eventually affected
by this propagation process represents the influence f (S) of the
seed nodes S . The problem aims to find the seed nodes that have
maximum influence [6, 17]. The problem apparently relies on the
network structure which describes links between nodes [4, 13, 14,
20, 21]. In the real-world, however, this network structure is often
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unavailable due to, e.g., difficulty in collecting accurate social link
data or privacy concerns. It is thus important to investigate the
problem without the presence of the network structure.

Several studies address IM without a given network structure.
Some works, e.g., [5, 12, 18, 19] assume that the network can be
queried, while others, e.g., [7, 8, 15, 22] assume the presence of
cascade information which makes the influence function PAC learn-
able. Instead, we adopt the paradigm of influence maximization
from samples (IMFS), which aims to optimize the influence function
f given sample pairs of the form (S, f (S)). Assuming the samples
are taken from a specific distribution, the OPS algorithm solves
IMFS and achieves an optimization rate of Ω̃(n−1/4) with polynomi-
ally many samples [2]. [1] then proposed the COPS algorithm for
networks with a clear community structure [11]. The algorithm out-
performs OPS for samples generated by the independent cascade
(IC) model. A number of limitations exist with these methods as:
Firstly, these methods require certain specific sample distributions;
Then, OPS fails to capture other information diffusion models such
as the linear threshold (LT) model.

This paper addresses IMFS with a learning-centered approach.
(1) We use a neural network framework that trains a influence
predictionmodel (IPM) to represent influence. (2) Two algorithms are
proposed based on IPM: NeuGreedy which simulates the original
greedy algorithm as presented in [10]; and NeuMax which utilizes
the neural network structure. These algorithm exhibit superior
performance as compared to the benchmark algorithms.

2 PROBLEM FORMULATION
LetV be a set of nodes denoting a set ofn agents. A diffusion instance
on V captures the initialization and outcome of an information
diffusion process, i.e., it is a pair (S,R) where S ⊆ R ⊆ V ; S is called
the seed set and R is called the activated set. A diffusion mechanism
M is a probabilistic distribution over all diffusion instances on V .

The influence function f : 2V → [0, 1]V that corresponds toM

is defined by f (S) = (f (S)v )v ∈V where f (S)v is the probability
that v becomes activated in a diffusion instance inM with seed set
S . Set | f (S)| B

∑
v ∈V f (s)v ; it expresses the social influence of the

set S . Influence maximization from samples (IMFS) assumes that we
are given samples from the diffusion mechanismM and k ∈ N. The
goal is to find a set S ⊆ V with |S | ≤ k and the maximum | f (S)|.
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3 METHODS
We train a feed-forward neural network to represent the influence
function f given a collection H of diffusion instances. The problem
can be seen as multi-label classification: A sample (S,R) is multi-
hop encoded as a pair of {0, 1}-vectors ®S and ®R where for any set
U ⊆ V , the entry ®Uv = 1 if v ∈ U and ®Uv = 0 otherwise. We use an
m-dimensional bias vector ®b = (b1, . . . ,bm ). Letφ>0 : Rm → Rm be
the transformation that turns the negative entries of any vector into
0. Let ®σ denote the sigmoid squash function on a vector.Given matri-
ces ®K , ®L, ®b, the influence prediction model (IPM) is a vector f̂ ®K, ®L, ®b (S)

for any set S ⊆ V by f̂ ®K, ®L, ®b (S) = ®σ (φ>0( ®S( ®K + ®b))®LT ). Using gradi-

ent descent, we find the parameters ®K , ®L and ®b that minimize the
cross-entropy loss L(f , f̂ ®K, ®L, ®b ) =

∑
v ∈V f (S)v log

(
f̂ ®k, ®L, ®b (S)v

)
.

The NeuGreedy algorithm. The greedy algorithm exploits sub-
modularity of the influence function and solves the IM problemwith
a given social network structure with a guaranteed approximation
ratio of 1−1/e [10]. The procedure builds the seed set S by iteratively
adding to S the agent with the highest marginal reward, i.e., the
net increase in S’ influence. The NeuGreedy algorithm takes the
same idea using the optimized IPM as a surrogate of the diffusion
mechanism M to evaluate the influence function.
The NeuMax algorithm. Recall that the matrix ®K encodes the
interplay between a set S ⊆ V and m features, while ®L encodes
the interplay between the samem features and the activated node
set R ⊆ V . The “strength” of a node v ∈ S to the ith feature is
expressed by the ith row vector in ®K , while the “strength” of the
ith feature to a node u ∈ R is expressed by the ith row vector in ®L.
Define the influence matrix as the product ®W = ®K ®LT . The (i, j)-th
entry in ®W represents in a certain sense how much activating node
i may lead to the activation of node j. The core idea behind the
NeuMax algorithm is to extract influential nodes by analyzing the
influence matrix ®W . Set importance(v) B

∑
u ∈V ®W (v,u). For i ∈ V ,

normalize the column vector ®W (i) so that the lowest value having
value 0 and the highest having value 1 to get ®̃W (i). ®̃W denotes the
normalized influence matrix

[
®̃W (1) . . . ®̃W (n)

]
. For a seed set S and

a threshold θ ∈ [0, 1], define the expansion as

Expandθ (S) =

{
v ∈ V

����� ∑
u ∈S

®̃W (u,v) > θ

}
.

The expanded set of S approximates the influence function f . To
build a seed set, theNeuMax algorithm greedily selects nodes utiliz-
ing both views above. At every iteration, it evaluates the expansion
A of the current seeds S . If |A| < n, it selects a node by the column
view. Otherwise, it applies the row view.

4 EXPERIMENTS
Our experiments use three benchmark algorithms: •Random.Here
the k seeds are selected at random. • COPS. [1] COPS is shown to
have significantly better performance than other IMFS algorithms.
• Greedy. [9] The algorithm has guaranteed approximation ratio
but relies on the given network structure. We verify our methods
over generated datasets from three real-world network data sets: A

Twitter social network (soc-twitter-copen, 761 nodes, 1029 edges)1,
a power network (bcspwr06, 899 nodes, 2914 edges)2, and an online
voting network (rt-wiki-vote, 1454 nodes, 3377 edges 2). To gen-
erate diffusion instances, we use LT and IC diffusion models. The
generated instances are then used as training samples to produce
our IPM. We also use the real-world diffusion instance dataset in
[7] which contains 300 million blog posts and articles from 5,000
media sites. The data set contains 1000 agents and 29265 samples.

As shown in Fig. 1 (for real networks) and Fig. 2 (for the real-
world samples), our algorithms clearly outperform the random
benchmark by a large margin. They outperform COPS in most
of the cases, and achieve comparable results as the greedy algo-
rithm. For IC, NeuMax generally outperforms NeuGreedy while
NeuGreedy is slightly better for LT. Over the real-world cascade
data sets, NeuMax clearly outperforms the other algorithms, while
COPS is much worse, matched even by the greedy benchmark with
the number of seeds exceeds 20.

Figure 1: Comparison across the datasets: bcspwr06 (left),
twitter(mid)) and wikivote (right). Samples are generated us-
ing LT (above) and IC (below) models.

Figure 2: Results on real-world samples. The greedy algo-
rithm cannot be applied due to lack of network data.

1http://konect.uni-koblenz.de/networks
2http://networkrepository.com
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